Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P.F. Carcia, J. Appl. Phys. 63, 5066 (1988).
2.M.T. Johnson, P.J.H. Bloemen, F.J. a Den Broeder, and J.J. De Vries, Reports Prog. Phys. 59, 1409 (1999).
3.S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater. 9, 721 (2010).
4.G. Yu, P. Upadhyaya, Y. Fan, J.G. Alzate, W. Jiang, K.L. Wong, S. Takei, S.A. Bender, L.-T. Chang, Y. Jiang, M. Lang, J. Tang, Y. Wang, Y. Tserkovnyak, P.K. Amiri, and K.L. Wang, Nat. Nanotechnol. 9, 548 (2014).
5.L. Liu, O.J. Lee, T.J. Gudmundsen, D.C. Ralph, and R. a. Buhrman, Phys. Rev. Lett. 109, 1 (2012).
6.M. Heide, G. Bihlmayer, and S. Blügel, Phys. Rev. B 78, 140403 (2008).
7.W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M.B. Jungfleisch, F.Y. Fradin, J.E. Pearson, Y. Tserkovnyak, K.L. Wang, O. Heinonen, S.G.E. te Velthuis, and A. Hoffmann, Science. 349, 283 (2015).
8.T. Ueno, J. Sinha, N. Inami, Y. Takeichi, S. Mitani, K. Ono, and M. Hayashi, Sci. Rep. 5, 14858 (2015).
9.S. Bandiera, R.R. Sousa, B. Rodmacq, and B. Dieny, IEEE Magn. Lett. 2, 3000504 (2011).
10.D. Clarke, O.A. Tretiakov, and O. Tchernyshyov, Phys. Rev. B 75, 174433 (2007).
11.Y.L. Iunin, Y.P. Kabanov, V.I. Nikitenko, X.M. Cheng, D. Clarke, O.A. Tretiakov, O. Tchernyshyov, A.J. Shapiro, R.D. Shull, and C.L. Chien, Phys. Rev. Lett. 98, 14 (2007).
12.O. Portmann, a Vaterlaus, and D. Pescia, Nature 422, 701 (2003).
13.T. Shinjo, T. Okuno, R. Hassdorf, K Shigeto, and T. Ono, Science. 289, 930 (2000).
14.See supplementary material at for saturation magnetisation and anisotrpic field data.[Supplementary Material]
15.C. Train, R. Mégy, and C. Chappert, J. Magn. Magn. Mater. 202, 321 (1999).
16.S. Bandiera, R.C. Sousa, B. Rodmacq, L. Lechevallier, and B. Dieny, J. Phys. D. Appl. Phys. 46, 485003 (2013).

Data & Media loading...


Article metrics loading...



The effect of Cu dusting on perpendicular magnetic anisotropy of sputter grown Pt/Co/Pt stack in which the Cu layer is in proximity with that of Co is investigated in this work. We used magneto optic Kerr effect microscopy measurements to study the variation in the reversal mechanisms in films with Co thicknesses below 0.8nm by systematically varying their perpendicular magnetic anisotropy using controlled Cu dusting. Cu dusting was done separately above and below the cobalt layer in order to understand the role of bottom and top Pt layers in magnetization reversal mechanisms of sputtered Pt/Co/Pt stack. The introduction of even 0.3nm thick Cu layer below the cobalt layer drastically affected the perpendicular magnetic anisotropy as evident from the nucleation behavior. On the contrary, even a 4nm thick top Cu layer had little effect on the reversal mechanism. These observations along with magnetization data was used to estimate the role of top and bottom Pt in the origin of perpendicular magnetic anisotropy as well as magnetization switching mechanism in Pt/Co/Pt thin films. Also, with an increase in the bottom Cu dusting from 0.2 to 0.4nm there was an increase in the number of nucleation sites resulting in the transformation of domain wall patterns from a smooth interface type to a finger like one and finally to maze type.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd