Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. A. S. Boff, R. Hinrichs, B. Canto, F. Mesquita, D. L. Baptista, G. L. F. Fraga, and L. G. Pereira, Applied Physics Letters 105, 143112 (2014).
2.D. P. Yang, Y. D. Zhang, and S. Hui, Journal of Applied Physics 91, 8198 (2002).
3.S. Honda, T. Okada, M. Nawate, and M. Tokumoto, Physical Review B 56, 14566.
4.P. L. Zhu, F. Xue, Z. Liu, Y. L. Fan, Z. M. Jiang, and X. J. Yang, Journal of Applied Physics 106, 043907 (2009).
5.S. Honda, T. Shimizu, T. Une, M. Sakamoto, K. Kawabata, and T. Tanaka, Journal of Applied Physics 94, 4279 (2003).
6.R. M. Roshko and C. A. Viddal, Journal of Applied Physics 97, 10E506 (2005).
7.S. H. Ge, L. Xi, Z. Z. Zhang, Y. P. Liu, and C. X. Li, Journal of Magnetism and Magnetic Materials 226, 1522 (2001).
8.N. J. Tang, H. Y. Jiang, W. Zhong, X. L. Wu, W. Q. Zou, and Y. W. Du, Journal of Alloys and Compounds 419, 145 (2006).
9.P. Lobotka, J. Dérer, I. Vávra, F. C. Julián, G. Mattei, and P. Mazzoldi, Physical Review B 75, 024423 (2007).
10.A. Zeleňáková, V. Zeleňák, I. Mat’ko, M. Strečková, P. Hrubovčák, and J. Kováč, Journal of Applied Physics 116, 033907 (2014).
11.Q. Wang, Y. Z. Cao, G. J. Li, K. Wang, J. J. Du, and J. C. He, Science of Advanced Materials 5, 447 (2013).
12.M. Nawa, R. Baba, S. Nakabayashi, and C. Dushkin, Nano Lett. 3, 293 (2003).
13.J. P. Chopart, O. Aaboubi, and K. Msellak, J. Solid State Electr. 11, 703 (2007).
14.M. Kasuga, T. Takano, S. Akiyama, K. Hiroshima, K. Yano, and K. Kishio, J. Cryst. Growth 275, e1545 (2005).
15.H. Y. Wang, S. Mitani, M. Motokawa, and H. Fujimori, J. Appl.Phys. 93, 9145 (2003).
16.G. J. Li, J. J. Du, H. M. Wang, Q. Wang, Y. H. Ma, and J. C. He, Material Letters 133, 53 (2014).
17.J. J. Du, G. J. Li, Q. Wang, Y. Z. Cao, Y. H. Ma, and J. C. He, Nano 9, 1450025 (2014).
18.G. J. Li, Y. Z. Cao, Q. Wang, G. J. Li, J. J. Du, Y. Zhao, and J. C. He, Vacuum 106, 75 (2014).
19.M. Kasuga, T. Takano, S. Akiyama, K. Hiroshima, K. Yano, and K. Kishio, J Cryst Growth 275, e1545 (2005).
20.G. J. Li, H. M. Wang, Q. Wang, Y. Zhao, Z. Zhen, J. J. Du, and Y. H. Ma, Nanoscale Research Letters 10, 112 (2015).
21.Q. Wang and J. C. He, Material Science under High Magnetic Field (Science Press, Beijing, 2014).
22.J. J. Du, G. J. Li, Q. Wang, Y. H. Ma, Y. Z. Cao, and J. C. He, Vacuum 88, 121 (2014).

Data & Media loading...


Article metrics loading...



Composite film of Fe nanoparticles embedded in a SiO matrix has been prepared by the co-evaporation of Fe and SiO. Both source temperature and in-situ high magnetic field (HMF) have been used to adjust the Fe particle size and the growth of Fe-SiOfilm. The size of Fe particle decreased with increasing the source temperature without HMF. When HMF was presented during the growth of the film, the size of Fe particle was enlarged and reduced for source temperatures of 1300 °C and 1400 °C, respectively. Meanwhile, the preferred orientation of the filmgrown at 1400 °C became uniform with the application of HMF. In addition, it is also found that the film was formed in two layers. One layer is formed by the Fe particle, while the other is free of Fe particles due to the existence of more SiO. The structural variation has a significant effect on the magnetic properties. The coercivity (90 Oe) of the 1300 °C film is much higher than that (6 Oe) of the 1400 °C film with a small particle size and uniform orientation. The saturation magnetization can be increased by increasing the Fe particle volume fraction. This study develops a new method to tune the soft magnetic properties by the co-evaporation of Fe and SiO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd