Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4944516
1.
1.M. A. S. Boff, R. Hinrichs, B. Canto, F. Mesquita, D. L. Baptista, G. L. F. Fraga, and L. G. Pereira, Applied Physics Letters 105, 143112 (2014).
http://dx.doi.org/10.1063/1.4898094
2.
2.D. P. Yang, Y. D. Zhang, and S. Hui, Journal of Applied Physics 91, 8198 (2002).
http://dx.doi.org/10.1063/1.1446120
3.
3.S. Honda, T. Okada, M. Nawate, and M. Tokumoto, Physical Review B 56, 14566.
http://dx.doi.org/10.1103/PhysRevB.56.14566
4.
4.P. L. Zhu, F. Xue, Z. Liu, Y. L. Fan, Z. M. Jiang, and X. J. Yang, Journal of Applied Physics 106, 043907 (2009).
http://dx.doi.org/10.1063/1.3204474
5.
5.S. Honda, T. Shimizu, T. Une, M. Sakamoto, K. Kawabata, and T. Tanaka, Journal of Applied Physics 94, 4279 (2003).
http://dx.doi.org/10.1063/1.1605818
6.
6.R. M. Roshko and C. A. Viddal, Journal of Applied Physics 97, 10E506 (2005).
http://dx.doi.org/10.1063/1.1847972
7.
7.S. H. Ge, L. Xi, Z. Z. Zhang, Y. P. Liu, and C. X. Li, Journal of Magnetism and Magnetic Materials 226, 1522 (2001).
8.
8.N. J. Tang, H. Y. Jiang, W. Zhong, X. L. Wu, W. Q. Zou, and Y. W. Du, Journal of Alloys and Compounds 419, 145 (2006).
http://dx.doi.org/10.1016/j.jallcom.2005.03.126
9.
9.P. Lobotka, J. Dérer, I. Vávra, F. C. Julián, G. Mattei, and P. Mazzoldi, Physical Review B 75, 024423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.024423
10.
10.A. Zeleňáková, V. Zeleňák, I. Mat’ko, M. Strečková, P. Hrubovčák, and J. Kováč, Journal of Applied Physics 116, 033907 (2014).
http://dx.doi.org/10.1063/1.4890354
11.
11.Q. Wang, Y. Z. Cao, G. J. Li, K. Wang, J. J. Du, and J. C. He, Science of Advanced Materials 5, 447 (2013).
http://dx.doi.org/10.1166/sam.2013.1474
12.
12.M. Nawa, R. Baba, S. Nakabayashi, and C. Dushkin, Nano Lett. 3, 293 (2003).
http://dx.doi.org/10.1021/nl0258630
13.
13.J. P. Chopart, O. Aaboubi, and K. Msellak, J. Solid State Electr. 11, 703 (2007).
http://dx.doi.org/10.1007/s10008-006-0237-5
14.
14.M. Kasuga, T. Takano, S. Akiyama, K. Hiroshima, K. Yano, and K. Kishio, J. Cryst. Growth 275, e1545 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.11.189
15.
15.H. Y. Wang, S. Mitani, M. Motokawa, and H. Fujimori, J. Appl.Phys. 93, 9145 (2003).
http://dx.doi.org/10.1063/1.1570505
16.
16.G. J. Li, J. J. Du, H. M. Wang, Q. Wang, Y. H. Ma, and J. C. He, Material Letters 133, 53 (2014).
http://dx.doi.org/10.1016/j.matlet.2014.06.162
17.
17.J. J. Du, G. J. Li, Q. Wang, Y. Z. Cao, Y. H. Ma, and J. C. He, Nano 9, 1450025 (2014).
http://dx.doi.org/10.1142/S1793292014500258
18.
18.G. J. Li, Y. Z. Cao, Q. Wang, G. J. Li, J. J. Du, Y. Zhao, and J. C. He, Vacuum 106, 75 (2014).
http://dx.doi.org/10.1016/j.vacuum.2014.03.011
19.
19.M. Kasuga, T. Takano, S. Akiyama, K. Hiroshima, K. Yano, and K. Kishio, J Cryst Growth 275, e1545 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.11.189
20.
20.G. J. Li, H. M. Wang, Q. Wang, Y. Zhao, Z. Zhen, J. J. Du, and Y. H. Ma, Nanoscale Research Letters 10, 112 (2015).
http://dx.doi.org/10.1186/s11671-015-0834-2
21.
21.Q. Wang and J. C. He, Material Science under High Magnetic Field (Science Press, Beijing, 2014).
22.
22.J. J. Du, G. J. Li, Q. Wang, Y. H. Ma, Y. Z. Cao, and J. C. He, Vacuum 88, 121 (2014).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4944516
Loading
/content/aip/journal/adva/6/5/10.1063/1.4944516
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4944516
2016-03-14
2016-12-04

Abstract

Composite film of Fe nanoparticles embedded in a SiO matrix has been prepared by the co-evaporation of Fe and SiO. Both source temperature and in-situ high magnetic field (HMF) have been used to adjust the Fe particle size and the growth of Fe-SiOfilm. The size of Fe particle decreased with increasing the source temperature without HMF. When HMF was presented during the growth of the film, the size of Fe particle was enlarged and reduced for source temperatures of 1300 °C and 1400 °C, respectively. Meanwhile, the preferred orientation of the filmgrown at 1400 °C became uniform with the application of HMF. In addition, it is also found that the film was formed in two layers. One layer is formed by the Fe particle, while the other is free of Fe particles due to the existence of more SiO. The structural variation has a significant effect on the magnetic properties. The coercivity (90 Oe) of the 1300 °C film is much higher than that (6 Oe) of the 1400 °C film with a small particle size and uniform orientation. The saturation magnetization can be increased by increasing the Fe particle volume fraction. This study develops a new method to tune the soft magnetic properties by the co-evaporation of Fe and SiO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4944516.html;jsessionid=e6jeDb0htRCHHQ7mlZEcOqRw.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4944516&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4944516&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4944516'
Right1,Right2,Right3,