Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4944654
1.
1.K. H. J. Buschow, “Permanent magnet materials based on 3d-rich ternary compounds,” in Ferromagnetic Materials, edited by E. P. Wohlfarth and K. H. J. Buschow (North-Holland, Amsterdam, 1988), Vol. 4, p. 1.
2.
2.R. Lemaire, Cobalt 32, 132 (1966).
3.
3.R. Lemaire and J. Schweizer, J. Physique 28, 216 (1967).
http://dx.doi.org/10.1051/jphys:01967002802021600
4.
4.J. M. Alameda, D. Givord, R. Lemaire, Q. Lu, S. B. Palmer, and F. Tasset, J. Phys. Colloques 43, C7-133 (1982).
http://dx.doi.org/10.1051/jphyscol:1982720
5.
5.M. Forker, A. Julius, M. Schulte, and D. Best, Phys. Rev. B 57, 11565 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.11565
6.
6.F. M. Mulder, R. Coehoorn, R. C. Thiel, and K. H. J. Buschow, Phys. Rev. B 56, 5786 (1977).
http://dx.doi.org/10.1103/PhysRevB.56.5786
7.
7.V. I. Krylov and N. N. Delyagin, J. Magn. and Magn. Mater. 305, 1 (2006).
http://dx.doi.org/10.1016/j.jmmm.2005.11.019
8.
8.N. N. Delyagin and V. I. Krylov, J. Phys.: Condens. Matter. 19, 086205 (2007).
http://dx.doi.org/10.1088/0953-8984/19/8/086205
9.
9.P. de la Presa, S. Müller, A. F. Pasquevich, and M. Forker, J. Phys.: Condens. Matter 12, 3423 (2000).
http://dx.doi.org/10.1088/0953-8984/12/14/317
10.
10.A. W. Carbonari, R. N. Saxena, W. Pendl, Jr., J. Mestnik-Filho, R. N. Atilli, M. Olzon-Dionysio, and S. D. de Souza, J. Magn. Magn. Mater. 163, 313 (1996).
http://dx.doi.org/10.1016/S0304-8853(96)00338-1
11.
11.G. A. Cabrera-Pasca, A. W. Carbonari, B. Bosch-Santos, J. Mestnik-Filho, and R. N. Saxena, J. Phys.: Condens. Matter 24, 416002 (2012).
http://dx.doi.org/10.1088/0953-8984/24/41/416002
12.
12.J. Schweizer and F. Tasset, J. Phys. F: Metal Phys. 10, 2799 (1980).
http://dx.doi.org/10.1088/0305-4608/10/12/020
13.
13.A. P. Jain and T. E. Cranshaw, Phys. Lett. A 25, 421 (1967).
http://dx.doi.org/10.1016/0375-9601(67)90058-8
14.
14.M. Forker, S. Müller, P. De La Presa, and A. F. Pasquevitch, Phys. Rev. B 68, 014409 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.014409
15.
15.S. Müller, P. De La Presa, and M. Forker, Hyperfine Interact. 133, 59 (2001).
http://dx.doi.org/10.1023/A:1012249115514
16.
16.M. Forker, R. Müsseler, S. C. Bedi, M. Olzon-Dionysio, and S. Dionysio de Souza, Phys. Rev. B 71, 094404 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.094404
17.
17.G.N. Rao, Hyperfine Interact. 24-26, 1119 (1985).
http://dx.doi.org/10.1007/BF02354655
18.
18.N. N. Delyagin and E. N. Kornienko, Sov. Phys. JETP 34, 1036 (1972).
19.
19.A. Andreeff, H.-J. Hunger, and S. Unterricker, Phys. Stat Solidi (b) 73, K89 (1976).
http://dx.doi.org/10.1002/pssb.2220730247
20.
20.S. Jha, H. M. Seyoum, G. M. Julian, R. A. Dunlap, A. Vasquez, J. G. M. da Cunha, and S. M. M. Ramos, Phys. Rev. B 32, 3279 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.3279
21.
21.J. Kanamori, H. Akai, and M. Akai, Hyperfine Interact. 17-19, 287 (1984).
http://dx.doi.org/10.1007/BF02065916
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4944654
Loading
/content/aip/journal/adva/6/5/10.1063/1.4944654
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4944654
2016-03-17
2016-12-09

Abstract

The magnetic hyperfine field () in ferrimagnetic GdCo compound has been investigated as a function of temperature by Mössbauer effect (ME) spectroscopy and perturbed angular correlation(PAC) spectroscopy using 119Sn and 111Cd probe nuclei, respectively. Results show that the non-magnetic probe atoms 119Sn and 111Cd substitute all three non-equivalent positions in GdCo: Gd, Co, and Co. For 119Sn and 111Cd probes at Gd sites, the saturation magnetic hyperfine fields are very different with values of = 57.0(1) T and = 20.7(1) T, respectively. For 119Sn and 111Cd atoms localized at Co and Co sites the magnetic hyperfine fields are practically identical and, in saturation, reach the values of = 11.6(1) T and = 11.1(2) T, and = 14.8(1) T and = 14.4(2) T, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4944654.html;jsessionid=Y9bcMxSOr6ZNSoTUQ0dX_CT1.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4944654&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4944654&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4944654'
Right1,Right2,Right3,