Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. H. Henager, Jr., J. S. McCloy, P. Ramuhalli, D. J. Edwards, S. Hu, and Y. Li, Acta Materialia 61, 3285 (2013).
2.P. V. Tsvetkov, Nuclear power: Control, reliability and human factors (InTech, 2011).
3.D. C. Jiles, Introduction to Magnetism and Magnetic Materials, 2nd ed. (CRC Press, Boca Raton, 1998).
4.J. S. McCloy, P. Ramuhalli, and J. C. Henager, AIP Conference Proceedings 1511, 1709 (2013).
5.A. Stancu, D. Ricinschi, L. Mitoseriu, P. Postolache, and M. Okuyama, Applied Physics Letters 83, 3767 (2003).
6.D. A. Gilbert, G. T. Zimanyi, R. K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. L. Vicent, and K. Liu, Sci. Rep. 4, 4204 (2014).
7.C. R. Pike, A. P. Roberts, and K. L. Verosub, Journal of Applied Physics 85, 6660 (1999).
8.F. Preisach, Zeitschrift für Physik A Hadrons and Nuclei 94, 277 (1935).
9.I. D. Mayergoyz, Mathematical models of hysteresis (Springer-Verlag, 1991).
10.Y. Cao, K. Xu, W. Jiang, T. Droubay, P. Ramuhalli, D. Edwards, B. Johnson, and J. McCloy, Journal of Magnetism and Magnetic Materials 395, 361 (2015).
11.M. Winklhofer, R. K. Dumas, and K. Liu, J. Appl. Phys. 103, 07C518 (2008).
12.M. Winklhofer and G. T. Zimanyi, Journal of Applied Physics 99, 08E710 (2006).
13.I. Altpeter, G. Dobmann, M. Kröning, M. Rabung, and S. Szielasko, NDT & E International 42, 283 (2009).
14.M. Perez, F. Perrard, V. Massardier, X. Kleber, A. Deschamps, H. de Monestrol, P. Pareige, and G. Covarel, Philosophical Magazine 85, 2197 (2005).
15.Y. Kamada, P. Duck-Gun, S. Takahashi, H. Kikuchi, S. Kobayashi, K. Ara, H. Jun-Hwa, and P. In-Gyu, Magnetics, IEEE Transactions on 43, 2701 (2007).
16.R. J. Harrison and J. M. Feinberg, Geochem. Geophys. Geosyst. 9, Q05016 (2008).
17.D. Craik, Magnetism: Principles and Applications (John Wiley & Sons, Chichester, 1995).
18.Y. Kamada, S. Takahashi, H. Kikuchi, S. Kobayashi, K. Ara, J. Echigoya, Y. Tozawa, and K. Watanabe, Journal of Materials Science 44, 949 (2009).
19.C. C. H. Lo, Journal of Applied Physics 111, 07D109 (2012).
20.S. Kobayashi, H. Kikuchi, S. Takahashi, Y. Kamada, K. Ara, T. Yamamoto, D. Klingensmith, and G. R. Odette, Journal of Nuclear Materials 384, 109 (2009).
21.V. I. O. Paredes, M. R. N. Astudillo, N. Nu–ez, J. E. Ruzzante, M. I. L. Pumarega, M. P. Gomez, and D. N. Torres, Procedia Materials Science 1, 651 (2012).
22.D. G. Park, K. S. Ryu, S. Kobayashi, S. Takahashi, and Y. M. Cheong, Journal of Applied Physics 107 (2010).
23.J. A. Pérez-Benítez, J. H. Espina-Hernández, P. Martínez-Ortiz, A. F. Chávez-González, and J. M. de la Rosa, Journal of Magnetism and Magnetic Materials 347, 51 (2013).
24.C. C. H. Lo, AIP Conference Proceedings 1430, 1351 (2012).
25.Y. Li, B. Xu, S. Hu, Y. Li, Q. Li, and W. Liu, AIP Advances 5, 077168 (2015).
26.D. G. Hwang and H. C. Kim, Journal of Physics D: Applied Physics 21, 1807 (1988).

Data & Media loading...


Article metrics loading...



Magnetic Barkhausen noise (MBN), hysteresis measurements, first order reversal curves (FORC), Vickers microhardness, and Transmission Electron Microscopy(TEM) analyses were performed on Fe-1wt.%Cu (Fe-Cu) samples isothermally aged at 700°C for 0.5 – 25 hours to obtain samples with different sized Cu precipitates and dislocation structures. Fe-Cu is used to simulate the thermal and irradiation-induced defects in copper-containing nuclear reactor materials such as cooling system pipes and pressure vessel materials. The sample series showed an initial increase followed by a decrease in hardness and coercivity with aging time, which is explained by Cu precipitates formation and growth as observed by TEM measurements. Further, the MBN envelope showed a continuous decrease in its magnitude and the appearance of a second peak with aging. Also, FORC diagrams showed multiple peaks whose intensity and location changed for different aging time. The changes in FORC diagrams are attributed to combined changes of the magnetic behavior due to Cu precipitate characteristics and dislocation structure. A second series of samples aged at 850°C, which is above the solid solution temperature of Fe-Cu, was studied to isolate the effects of dislocations. These samples showed a continuous decrease in MBN amplitude with aging time although the coercivity and hardness did not change significantly. The decrease of MBN amplitude and the appearance of the second MBN envelope peak are attributed to the changes in dislocation density and structure. This study shows that the effect of dislocations on MBN and FORC of Fe-Cu materials can vary significantly and should be considered in interpreting magnetic signatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd