Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4945042
1.
1.C.S.S.R. Kumar and F. Mohammad, Adv. Drug Deliv. Rev. 63, 789 (2011).
http://dx.doi.org/10.1016/j.addr.2011.03.008
2.
2.L. Yu, J. Liu, K. Wu, T. Klein, Y. Jiang, and J.-P. Wang, Sci. Rep. 4, 7216 (2014).
http://dx.doi.org/10.1038/srep07216
3.
3.L. Chen, L. Li, H. Zhang, W. Liu, Y. Yang, X. Liu, and B. Xu, RSC Adv. 4, 46806 (2014).
http://dx.doi.org/10.1039/C4RA09393C
4.
4.S.-F. Lee, X.-M. Zhu, Y.-X.J. Wang, S.-H. Xuan, Q. You, W.-H. Chan, C.-H. Wong, F. Wang, J.C. Yu, C.H.K. Cheng, and K.C.-F. Leung, ACS Appl. Mater. Interfaces 5, 1566 (2013).
http://dx.doi.org/10.1021/am4004705
5.
5.S. Oyarzún, A. Domingues Tavares de Sa, J. Tuaillon-Combes, A. Tamion, A. Hillion, O. Boisron, A. Mosset, M. Pellarin, V. Dupuis, and M. Hillenkamp, J. Nanoparticle Res. 15, 1968 (2013).
http://dx.doi.org/10.1007/s11051-013-1968-8
6.
6.C. Wang, J. Meyer, N. Teichert, A. Auge, E. Rausch, B. Balke, A. Hütten, G.H. Fecher, and C. Felser, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 32, 020802 (2014).
http://dx.doi.org/10.1116/1.4866418
7.
7.Y. Jing, S. He, and J. Wang, Appl. Phys. Lett. 102, 253102 (2013).
http://dx.doi.org/10.1063/1.4811764
8.
8.H. Jin, T.-W. Chang, and G.L. Liu, Appl. Phys. Lett. 104, 243116 (2014).
http://dx.doi.org/10.1063/1.4883917
9.
9.K. Nakata, Y. Hu, O. Uzun, O. Bakr, and F. Stellacci, Adv. Mater. 20, 4294 (2008).
http://dx.doi.org/10.1002/adma.200800022
10.
10.A.A. Timopheev, V.M. Kalita, S.M. Ryabchenko, A.F. Lozenko, P.A. Trotsenko, A. V. Los, and M. Munakata, J. Appl. Phys. 108, 053902 (2010).
http://dx.doi.org/10.1063/1.3480802
11.
11. C.R.P.W. M. E., Science (80-. ). 287, 1466 (2000).
http://dx.doi.org/10.1126/science.287.5457.1466
12.
12.S. Sun, Nature 420, 395 (2002).
http://dx.doi.org/10.1038/nature01208
13.
13.K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, and a P. Philipse, Nat. Mater. 2, 88 (2003).
http://dx.doi.org/10.1038/nmat811
14.
14.J. Ku, D.M. Aruguete, A.P. Alivisatos, and P.L. Geissler, J. Am. Chem. Soc. 133, 838 (2011).
http://dx.doi.org/10.1021/ja107138x
15.
15.O. Akdogan, W. Li, B. Balasubramanian, D.J. Sellmyer, and G.C. Hadjipanayis, Adv. Funct. Mater. 23, 3262 (2013).
http://dx.doi.org/10.1002/adfm.201201353
16.
16.J.S. Jiang and S.D. Bader, J. Phys. Condens. Matter 26, 064214 (2014).
http://dx.doi.org/10.1088/0953-8984/26/6/064214
17.
17.A. Zeleňáková, V. Zeleňák, I. Mat’ko, M. Strečková, P. Hrubovčák, and J. Kováč, J. Appl. Phys. 116, 033907 (2014).
http://dx.doi.org/10.1063/1.4890354
18.
18.S. Mørup, M.B. Madsen, J. Franck, and C.J.W. Koch, J. Magn. Magn. Mater. 40, 163 (1983).
http://dx.doi.org/10.1016/0304-8853(83)90024-0
19.
19.V. Salgueiriño-Maceira, M. a. Correa-Duarte, A. Hucht, and M. Farle, J. Magn. Magn. Mater. 303, 163 (2006).
http://dx.doi.org/10.1016/j.jmmm.2005.11.003
20.
20.Y. Jing, S. He, and J. Wang, IEEE Trans. Magn. 49, 197 (2013).
http://dx.doi.org/10.1109/TMAG.2012.2226236
21.
21.X. Liu, S. He, J.-M. Qiu, and J.-P. Wang, Appl. Phys. Lett. 98, 222507 (2011).
http://dx.doi.org/10.1063/1.3597225
22.
22.J. Bai and J.-P. Wang, Appl. Phys. Lett. 87, 152502 (2005).
http://dx.doi.org/10.1063/1.2089171
23.
23.R.S. Sundar and S.C. Deevi, Int. Mater. Rev. 50, 157 (2005).
http://dx.doi.org/10.1179/174328005X14339
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4945042
Loading
/content/aip/journal/adva/6/5/10.1063/1.4945042
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4945042
2016-03-25
2016-12-10

Abstract

Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4945042.html;jsessionid=LbwqhOM_6dQo7LSOfu1QT7J0.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4945042&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4945042&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4945042'
Right1,Right2,Right3,