Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4945335
1.
1.J.J. Xie, J. Guo, L.M. Zhang, D.J. Li, G.L. Yang, F. Chen, K. Jiang, M.E. Evdokimov, M.M. Nazarov, U.M. Andreev, G.V. Lanskii, K.A. Kokh, A.E. Kokh, and V.A. Svetlichnyi, “Optical properties of non-linear crystal grown from the melt GaSe-AgGaSe2,” Optics Comm. 287, 145-149 (2012) (http://dx.doi.org/10.1016/j.optcom.2012.09.034).
http://dx.doi.org/10.1016/j.optcom.2012.09.034
2.
2.G. Xu, G. Sun, Y.J. Ding, I.B. Zotova, K.C. Mmandal, A. Mertiri, G. Pabst, and N. Fernelius, “Investigation of symmetries of second-order nonlear susceptibility tensor of GaSe crystals in THz domainn,” Optics Comm. 284, 2027-2030 (2011).
http://dx.doi.org/10.1016/j.optcom.2010.12.025
3.
3.Z. Rak, S.D. Mahanti, K.C. Mandal, and N.C. Fernelius, “Doping dependence of electronic and mechanical properties of GaSe1−xTex, and Ga1−xInxSe from first pricniples,” Phys. Rev. B 82, 155203 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155203
4.
4.W. Shi, Y.J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Optics Lett. 27, 1454-1456 (2002).
http://dx.doi.org/10.1364/OL.27.001454
5.
5.K.C. Mandal, S.H. Kang, M. Choi, J. Chen, X.C. Zhang, J.M. Schleicher, A. Achmuttenmaer, and N.C. Fernelius, “III-VI Chalcogenide Semiconductor Crystals for Broadband Tunable THz Sources and Sensors,” IEEE J. of Selected Topics in Quantum Electronics 14, 284 (2008).
http://dx.doi.org/10.1109/JSTQE.2007.912767
6.
6.G. Xu, G. Sun, Y.J. Ding, I.B. Zotova, K.C. Mandal, A. Mertiri, G. Pabst, R. Roy, and N.C. Fernelius, “Symmetries of Second-Order Nonlinear Susceptibility Tensor for GaSe by Investigating THz Generation,” IEEE 173 (2010).
7.
7.C.W. Chen, Y.K. Hsu, J.Y. Huang, and C.C. Chang, Opt. Express 14, 10636 (2006).
http://dx.doi.org/10.1364/OE.14.010636
8.
8.V.G. Voevodin, O.V. Voevodina, S.A. Bereznaya, Z.V. Korotchenko, A.N. Morozov, S.Y. Sarkisov, N.C. Fernelius, and J.T. Goldstein, “Large single crystals of gallium selenide: growing, doping by In and characterization,” Optics Materials 26, 495-499 (2004).
http://dx.doi.org/10.1016/j.optmat.2003.09.014
9.
9.Z.S. Feng, Z.H. Kang, F.G. Wu, J.Y. Gao, Y. Jiang, H.Z. Zhang, Y.M. Andreev, G.V. Lanskii, V.V. Atuchin, and T.A. Gavrilova, Opt. Express 16, 9978 (2008).
http://dx.doi.org/10.1364/OE.16.009978
10.
10.D.R. Suhre, N.B. Singh, V. Balakrishna, N.C. Fernelius, and F.K. Hopkins, Opt. Lett. 22, 775 (1997).
http://dx.doi.org/10.1364/OL.22.000775
11.
11.N.B. Singh, D.R. Suhre, W. Rosch, R. Meyer, M. Marable, N.C. Fernelius, F.K. Hopkins, D.E. Zelmon, and R. Narayanan, J. Cryst. Growth 198-199, 588 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)01214-7
12.
12.See, for example, in Semiconductors and Semimetals, edited by J. K. Furdyna and J. Kossut (Academic, Boston, 1988), Vol. 25.
13.
13.J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys. 64, R29 (1988).
http://dx.doi.org/10.1063/1.341700
14.
14.T. M. Pekarek, M. Duffy, J. Garner, B. C. Crooker, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 87, 6448 (2000).
http://dx.doi.org/10.1063/1.372734
15.
15.C. Fuller, A. Douglas, J. Garner, T. M. Pekarek, I. Miotkowski, and A. K. Ramdas, Phys. Rev. B 65, 195211 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195211
16.
16.J.L. Tracy, R. Mourad, J. Garner, T. M. Pekarek, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 99, 08D507 (2006).
http://dx.doi.org/10.1063/1.2162049
17.
17.T.M. Pekarek, E.M. Watson, J. Garner, P.M. Shand, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 107, 09E136 (2010).
http://dx.doi.org/10.1063/1.3366616
18.
18.T.M. Pekarek, E.M. Watson, J. Garner, P.M. Shand, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 101, 09D511 (2007).
http://dx.doi.org/10.1063/1.2710340
19.
19.J.L. Tracy, R. Mourad, J. Garner, T. M. Pekarek, I. Miotkowski, and A. K. Ramdas, Phys. Rev. B 72, 165201 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165201
20.
20.G. Franzese, A. Byrd, J.T. Tracy, J. Garner, T.M. Pekarek, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 97, 10D308 (2005).
http://dx.doi.org/10.1063/1.1847451
21.
21.T. M. Pekarek, L.H. Ranger, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 99, 08D511 (2006).
http://dx.doi.org/10.1063/1.2165924
22.
22.T. M. Pekarek, D.J. Arenas, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 97, 10M106 (2005).
http://dx.doi.org/10.1063/1.1851408
23.
23.D. Meda, J. H. Blackburn, L. Maxwell, J. Garner, T.M. Pekarek, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 105, 07C521 (2009).
http://dx.doi.org/10.1063/1.3076049
24.
24.T. M. Pekarek, B. C. Crooker, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 83, 6557 (1998).
http://dx.doi.org/10.1063/1.367781
25.
25.T. M. Pekarek, C. L. Fuller, J. Garner, B. C. Crooker, I. Miotkowski, and A. K. Ramdas, J. Appl. Phys. 89, 7030 (2001).
http://dx.doi.org/10.1063/1.1357843
26.
26. Landolt-Bornstein, Group III: Crystal and solid state physics, Semiconductors (Springer-Verlag, 1983), Vol. 9, p. 289.
27.
27.F. Hulliger and E. Mooser, Progr. Solid State Chem. 2, 330 (1965).
http://dx.doi.org/10.1016/0079-6786(65)90011-7
28.
28.N.N. Kolesnikov, E.B. Borisenko, D.N. Borisenko, and A.V. Timonina, Journal of Crystal Growth 365, 59-63 ;
http://dx.doi.org/10.1016/j.jcrysgro.2012.11.038
28.F. Hulliger and E. Mooser, Progr. Solid State Chem. 2, 330 (1965).
http://dx.doi.org/10.1016/0079-6786(65)90011-7
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4945335
Loading
/content/aip/journal/adva/6/5/10.1063/1.4945335
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4945335
2016-03-29
2016-10-01

Abstract

Magnetic properties of single crystalline GaFeTe ( = 0.05) have been measured. GaTe and related layered III-VI semiconductors exhibit a rich collection of important properties for THz generation and detection. The magnetization versus field for an = 0.05 sample deviates from the linear response seen previously in GaMnSe and GaMnS and reaches a maximum of 0.68 emu/g at 2 K in 7 T. The magnetization of GaFeTe saturates rapidly even at room temperature where the magnetization reaches 50% of saturation in a field of only 0.2 T. In 0.1 T at temperatures between 50 and 400 K, the magnetization drops to a roughly constant 0.22 emu/g. In 0 T, the magnetization drops to zero with no hysteresis present. The data is consistent with Van-Vleck paramagnetism combined with a pronounced crystalline anisotropy, which is similar to that observed for GaFeSe. Neither the broad thermal hysteresis observed from 100-300 K in InMnSe nor the spin-glass behavior observed around 10.9 K in GaMnS are observed in GaFeTe. Single crystal x-ray diffraction data yield a rhombohedral space group bearing hexagonal axes, namely R3c. The unit cell dimensions were a = 5.01 Å, b = 5.01 Å, and c = 17.02 Å, with α = 90°, β = 90°, and γ = 120° giving a unit cell volume of 369 Å3.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4945335.html;jsessionid=JT-UCb5ipQqx3hGFcTmUgy2l.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4945335&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4945335&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4945335'
Right1,Right2,Right3,