Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Samin, E. Lahti, and J. Zhang, “Analytical solutions of the planar cyclic voltammetry process for two soluble species with equal diffusivities and fast electron transfer using the method of eigenfunction expansions,” AIP Advances 5(8), 087141 (2015).
2.T. Berzins and P. Delahay, “Oscillographic Polarographic Waves for the Reversible Deposition of Metals on Solid Electrodes,” Journal of the American Chemical Society 75(3), 555-559 (1953).
3.S. E. Ward Jones, F. G. Chevallier, C. A. Paddon et al., “General Theory of Cathodic and Anodic Stripping Voltammetry at Solid Electrodes: Mathematical Modeling and Numerical Simulations,” Analytical Chemistry 79(11), 4110-4119 (2007).
4.J. S. Ellis, J. Strutwolf, and D. W. M. Arrigan, “Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid-liquid interface formed at a micropore,” Physical Chemistry Chemical Physics 14(7), 2494-2500 (2012).
5.H. Wang, A. Thiele, and L. Pilon, “Simulations of Cyclic Voltammetry for Electric Double Layers in Asymmetric Electrolytes: A Generalized Modified Poisson–Nernst–Planck Model,” The Journal of Physical Chemistry C 117(36), 18286-18297 (2013).
6.A. Molina, E. Laborda, J. González et al., “Linear Sweep and Cyclic Voltammetries of Reversible Ion Transfer Processes at Macro- and Microcapillaries under Transient Regime,” Electroanalysis 27(1), 93-100 (2015).
7.M. Pölzler, A. H. Whitehead, and B. Gollas, “A study of zinc electrodeposition from zinc chloride: choline chloride: ethylene glycol,” ECS Transactions (2010).
8.M. Li, B. Gao, Z. Shi et al., “Electrochemical study of nickel from urea-acetamide-LiBr low-temperature molten salt,” Electrochimica Acta 169, 82-89 (2015).
9.M. Li, Z. Wang, and R. G. Reddy, “Cobalt electrodeposition using urea and choline chloride,” Electrochimica Acta 123, 325-331 (2014).
10.S. Kim, S. Paek, T. Kim et al., “Electrode reactions of Ce3+/Ce couple in LiCl–KCl solutions containing CeCl3 at solid W and liquid Cd electrodes,” Electrochimica Acta 85, 332-335 (2012).
11.Y. Liu, G. Ye, K. Liu et al., “Electrochemical behavior of La(III) on the zinc-coated W electrode in LiCl-KCl eutectic.,” Electrochimica Acta 168, 206-215 (2015).
12.H. Tang and B. Pesic, “Electrochemistry of ErCl3 and morphology of erbium electrodeposits produced on Mo substrate in early stages of electrocrystallization from LiCl–KCl molten salts,” Electrochimica Acta 133, 224-232 (2014).
13.S. Martinet, J. Bouteillon, and J. P. Caire, “Modelling of cyclic voltammograms for two-step metal deposition on an inert electrode with adsorption,” Journal of Applied Electrochemistry 28(8), 819-825 (1998).
14.P. T. Sanecki, P. M. Skitał, and K. Kaczmarski, “The mathematical models of the stripping voltammetry metal deposition/dissolution process,” Electrochimica Acta 55(5), 1598-1604 (2010).
15.J. Zhang, “Parametric studies of uranium deposition and dissolution at solid electrodes,” Journal of Applied Electrochemistry 44(3), 383-390 (2013).
16.P. M. Skitał, P. T. Sanecki, and K. Gibała, “The description of the copper deposition/dissolution process in ammonia buffer with the application of mathematical two-plate model,” Electrochimica Acta 138, 383-391 (2014).
17.S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” Journal of the American Chemical Society 60(2), 309-319 (1938).
18.G. Nagy, Y. Sugimoto, and G. Denuault, “Three-dimensional random walk simulations of diffusion controlled electrode processes: (I) A hemisphere, disc and growing hemisphere,” Journal of Electroanalytical Chemistry 433(1–2), 167-173 (1997).
19.I. J. Cutress, E. J. F. Dickinson, and R. G. Compton, “Electrochemical random-walk theory: Probing voltammetry with small numbers of molecules: Stochastic versus statistical (Fickian) diffusion,” Journal of Electroanalytical Chemistry 655(1), 1-8 (2011).
20.I. J. Cutress and R. G. Compton, “How many molecules are required to measure a cyclic voltammogram?,” Chemical Physics Letters 508(4–6), 306-313 (2011).
21.L. Guo, A. Radisic, and P. C. Searson, “Kinetic Monte Carlo Simulations of Nucleation and Growth in Electrodeposition,” The Journal of Physical Chemistry B 109(50), 24008-24015 (2005).
22.R. G. Compton, E. Laborda, and K. R. Ward, “Understanding voltammetry : simulation of electrode processes” (2014).
23.J. E. Baur and P. N. Motsegood, “Diffusional interactions at dual disk microelectrodes: comparison of experiment with three-dimensional random walk simulations,” Journal of Electroanalytical Chemistry 572(1), 29-40 (2004).
24.W. Schmickler and E. Santos, Interfacial Electrochemistry (Springer-Verlag, Berlin, Heidelberg, 2010).
25.M. T. M. Koper, A. P. J. Jansen, R. A. Van Santen et al., “Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum,” The Journal of Chemical Physics 109(14), 6051-6062 (1998).
26.P. Zanello, Inorganic electrochemistry : theory, practice and applications (Cambridge: Royal Society of Chemistry, 2003).
27.H. Tang and B. Pesic, “Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt,” Electrochimica Acta 119, 120-130 (2014).
28.E. Mercado, M. Rodríguez-López, O. López et al., “Effect of bismuth surface coverage on the kinetics of quinone–hydroquinone at polycrystalline platinum electrodes,” Journal of Electroanalytical Chemistry 604(1), 26-32 (2007).

Data & Media loading...


Article metrics loading...



In this study, a one-dimensional stochastic model based on the random walk approach is used to simulate cyclic voltammetry. The model takes into account mass transport, kinetics of the redox reactions,adsorption effects and changes in the morphology of the electrode. The model is shown to display the expected behavior. Furthermore, the model shows consistent qualitative agreement with a finite difference solution. This approach allows for an understanding of phenomena on a microscopic level and may be useful for analyzing qualitative features observed in experimentally recorded signals.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd