Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948703
1.
1.S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011).
http://dx.doi.org/10.1063/1.3552291
2.
2.A. Íñiguez-de-la-Torre, I. Íñiguez-de-la-Torre, J. Mateos, T. González, P. Sangaré, M. Faucher, B. Grimbert, V. Brandli, G. Ducournau, and C. Gaquière, J. Appl. Phys. 111, 113705 (2012).
http://dx.doi.org/10.1063/1.4724350
3.
3.M. Feiginov, C. Sydlo, O. Cojocari, and P. Meissner, Appl. Phys. Lett. 99, 233506 (2011).
http://dx.doi.org/10.1063/1.3667191
4.
4.W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M. S. Shur, Appl. Phys. Lett. 85, 675 (2004).
http://dx.doi.org/10.1063/1.1775034
5.
5.H. Eisele and G. Haddad, IEEE Trans. Microwave Theory Tech. 46, 739 (1998).
http://dx.doi.org/10.1109/22.681195
6.
6.C. Benz and J. Freyer, Electron. Lett. 34, 2351 (1998).
http://dx.doi.org/10.1049/el:19981628
7.
7.S. Banerjee, P. Mukherjee, S. Mukherjee, and S. Sinha, in 2014 International Conference on Advances in Communication and Computing Technologies, Mumbai, India, August 2014. pp. 1-6.
8.
8.A. Acharyya and J. P. Banerjee, Appl. Nanosci. 4, 1 (2014).
http://dx.doi.org/10.1007/s13204-012-0172-y
9.
9.G. Salmer, J. Pribetich, A. Farrayre, and B. Kramer, J. Appl. Phys. 44, 314 (1973).
http://dx.doi.org/10.1063/1.1661879
10.
10.L. Yuan, J. A. Cooper, M. R. Melloch, and J. Kevin, IEEE Electron Devices Lett. 22, 266 (2001).
http://dx.doi.org/10.1109/55.924837
11.
11.E. Starikov, P. Shiktorov, V. Gružinskis, L. Reggiani, L. Varani, J. C. Vaissière, and J. H. Zhao, J. Appl. Phys. 89, 1161 (2001).
http://dx.doi.org/10.1063/1.1334924
12.
12.P. R. Tripathy, M. Mukherjee, and S.P. Pati, Int. J. Microw. Wirel. Technol. 4, 473 (2012).
http://dx.doi.org/10.1017/S1759078712000244
13.
13.A. K. Panda, R. K. Parida, N. C. Agrawala, and G. N. Dash, IET Microw. Antennas Propag. 2, 789 (2008).
http://dx.doi.org/10.1049/iet-map:20070317
14.
14.A. Reklaitis and L. Reggiani, J. Appl. Phys. 97, 043709 (2005).
http://dx.doi.org/10.1063/1.1853498
15.
15.K. P. D. Lim, P. A. Childs, and D. C. Herbert, J. Appl. Phys. 94, 3897 (2003).
http://dx.doi.org/10.1063/1.1595140
16.
16.A. Reklaitis and L. Reggiani, J. Appl. Phys. 95, 7925 (2004).
http://dx.doi.org/10.1063/1.1702144
17.
17.D. Lippens, E. Constant, M. R. Friscourt, P. A. Rolland, and G. Salmer, IEEE Electron Devices Lett. 3, 213 (1982).
http://dx.doi.org/10.1109/EDL.1982.25542
18.
18.P. A. Blakey, B. Culshaw, and R. A. Giblin, IEEE Trans. Electron Devices. 25, 674 (1978).
http://dx.doi.org/10.1109/T-ED.1978.19153
19.
19.B. Culshaw, R. A. Giblin, and P. A. Blakey, Int. J. Electronics. 37, 577 (1974).
http://dx.doi.org/10.1080/00207217408900569
20.
20.J. Pribetich, E. Constant, A. Farrayre, and M. Lefebvre, in 5th European Microwave Conference, Hamburg, Germany (1975), pp. 246-250.
21.
21.E. Constant, A. Mircea, J. Pribetich, and A. Farrayre, J. Appl. Phys 46, 3934 (1975).
http://dx.doi.org/10.1063/1.322141
22.
22.B. B. Van Iperen and H. Tjassens, Proc. IEEE. 59, 1030 (1971).
http://dx.doi.org/10.1109/PROC.1971.8323
23.
23.P. A. Blakey, B. Culshaw, and R. A. Giblin, Electron Lett. 10, 435 (1974).
http://dx.doi.org/10.1049/el:19740346
24.
24.Y. Hirachi, K. Kobayashi, K. Ogasawara, T. Hisatsugu, and Y. Toyama, IEEE 1976 International Electron Devices Meeting (Kawasaki, Japan), p102 (1976).
25.
25.B. Culshaw and R. A. Giblin, Electron Lett. 10, 285 (1974).
http://dx.doi.org/10.1049/el:19740226
26.
26.W. C. Ke, S. J. Lee, S. L. Chen, C. K. Kao, and W. C. Houng, Mater, Chem. Phys. 133, 1029 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.01.128
27.
27.T. Misawa, Solid-State. Electron. 13, 1369 (1970).
http://dx.doi.org/10.1016/0038-1101(70)90170-X
28.
28.D. L. Scharfetter and H. K. Gummel, IEEE Trans. Electron Devices. 16, 64 (1969).
http://dx.doi.org/10.1109/T-ED.1969.16566
29.
29.J. R. Grierson and S. O’Hara, Solid-State. Electron 16, 719 (1973).
http://dx.doi.org/10.1016/0038-1101(73)90115-9
30.
30.D. M. Caughey and R. E. Thomas, Proc. IEEE. 55, 2192 (1967).
http://dx.doi.org/10.1109/PROC.1967.6123
31.
31.See http://www.silvaco.com for Atlas User’s Manual, Version, 5.16.3.R.
32.
32.F. Schwierz, Solid-State. Electron 49, 889 (2005).
http://dx.doi.org/10.1016/j.sse.2005.03.006
33.
33.M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht, and P. P. Ruden, IEEE Trans. Electron Devices. 48, 535 (2001).
http://dx.doi.org/10.1109/16.906448
34.
34.L. A. Yang, Y. Hao, Q. Y. Yao, and J. C. Zhang, IEEE Trans. Electron Devices. 58, 1076 (2011).
http://dx.doi.org/10.1109/TED.2011.2105269
35.
35.K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, IEEE Electron Devices Lett. 20, 608 (1999).
http://dx.doi.org/10.1109/55.806100
36.
36.P. Bauhahn and G. Haddad, IEEE Trans. Electron Devices. 24, 634 (1977).
http://dx.doi.org/10.1109/T-ED.1977.18795
37.
37.W. T. Read, Bell System Technical Journal 37, 401 (1958).
http://dx.doi.org/10.1002/j.1538-7305.1958.tb01527.x
38.
38.R. L. Kuvås and W. E. Schroeder, IEEE Trans. Electron Devices. 22, 134 (1974).
39.
39.H. Eisele and G. I. Haddad, in Modern Semiconductor Device Physics, edited by S. M. Sze (Wiley, New York, 1998).
40.
40.B. Culshaw, P. A. Blakey, and R. A. Giblin, Electron Lett 11, 102 (1975).
http://dx.doi.org/10.1049/el:19750078
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948703
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948703
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948703
2016-05-02
2016-09-29

Abstract

A theoretical analysis of high-efficiency punch-through operation GaN-based terahertz IMPATT diodes has been carried out in this paper. It is shown that the negative differential mobility (NDM) characteristics of GaN coupled with the space charge effect acting as a self-feedback system can markedly increase the drift velocity of injection carriers, and thereby enhance diode performance under appropriate external RF voltage. The behavior of traveling electrons in the transit zone is investigated in detail. It is found that the IMPATT diode with a punch-through structure operating in the NDM mode exhibits superior characteristics compared with the equivalent diode operating in the Si-like constant mobility mode. In particular, the NDM-mode diode can tolerate a larger RF voltage swing than that operating in constant mobility mode. Numerical simulation results reveal that the highest efficiency of 26.6% and maximum RF power of 2.29 W can be achieved for the NDM-mode diode at a frequency of 225 GHz. A highest efficiency of 19.0% and maximum RF power of 1.58 W are obtained for the diode with constant mobility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948703.html;jsessionid=HPWZ2k1QuM0K-ovi3-TYByoF.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948703&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948703&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948703'
Right1,Right2,Right3,