Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948750
1.
1.H. Schmid, Ferroelectrics 162, 665 (1994).
2.
2.M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, Nature London 419, 818 (2002).
http://dx.doi.org/10.1038/nature01077
3.
3.T. Kimura, S. Kawamoto, I. Yamada, T. Arima, and Y. Takura, Nature London 426, 55 (2003).
http://dx.doi.org/10.1038/nature02018
4.
4.Proceedings of the 5th International Workshop on Magnetoelectric Interaction Phenomena in Crystals, edited byM. Fiebig, V. Eremenko, and I. E. Chupis Kluwer, Dordrecht, (2004).
5.
5.G. A. Smolenskii and I. E. Chupis, Usp. Fiz. Nauk 137, 415 (1982)
http://dx.doi.org/10.3367/UFNr.0137.198207b.0415
5.[G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982)].
http://dx.doi.org/10.1070/PU1982v025n07ABEH004570
6.
6.H. Schmid, Ferroelectrics 62, 317 (1994).
http://dx.doi.org/10.1080/00150199408245120
7.
7.M. Imada, A. Fujimori, and Tokura, Rev. Mod. Phys. 70, 10391263 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
8.
8.Y. Tokura and Nagaosa, Science 288, 462468 (2000).
http://dx.doi.org/10.1126/science.288.5465.462
9.
9.H. Y. Hwang, Nat. Mater. 11, 103113 (2012).
http://dx.doi.org/10.1038/nmat3223
10.
10.N.B Aetukuri et al., Nat. Phys. 9, 661666 (2013).
http://dx.doi.org/10.1038/nphys2733
11.
11.J. Chakhalian et al., Science 318, 11141117 (2007).
http://dx.doi.org/10.1126/science.1149338
12.
12.Da WoonJeong, Woo Seok Choi, Satoshi Okamoto, Jae–Young Kim, Kyung Wan Kim, Soon Jae Moon, Deok–Yong Cho, Ho Nyung Lee, and Tae Won Noh, Sci. Rep. 4, 6124 (2014).
http://dx.doi.org/10.1038/srep06124
13.
13.Jinbo Cao a,b and Junqiao Wu a,b, Materials Science and Engineering R 71, 3552 (2011).
http://dx.doi.org/10.1016/j.mser.2010.08.001
14.
14.J. Dvorak, Y.U. Idzerda, S.B. Ogale, S. Shinde, T. Wu, T. Venkatesan, R. Godfrey, and R. Ramesh, J. Appl. Phys. 97, 10C102 (2005).
http://dx.doi.org/10.1063/1.1845974
15.
15.Y. Tokura and N. Nagaosa, Science 288, 462-468 (2000).
http://dx.doi.org/10.1126/science.288.5465.462
16.
16.S Okamoto and AJ. Millis, Phys. Rev. B 70, 195120 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195120
17.
17.F Lechermann, S Biermann, and A. Georges, Progr. Theor. Phys. Suppl. 160, 233-252 (2005).
http://dx.doi.org/10.1143/PTPS.160.233
18.
18.L. de’ Medici, Phys. Rev. B 83, 205112 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.205112
19.
19.J.-Y. Yang, C. Terakura, M. Medarde, J. S. White, D. Sheptyakov, X.-Z. Yan, N.-N. Li, W.-G. Yang, H.-L. Xia, J.-H. Dai, Y.-Y. Yin, Y.-Y. Jiao, J.-G. Cheng, Y.-L. Bu, Q.-F. Zhang, X.-D. Li, C.-Q. Jin, Y. Taguchi, Y. Tokura, and Y.-W. Long, Phys. Rev. B 92, 195147 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.195147
20.
20.M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev. B 54, 5309 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.5309
21.
21.T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano, Phys. Rev. B 55, 4257 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.4257
22.
22.K. Asai, A. Yoneda, O. Yokokura, and K. Kohn, J. Phys. Soc. Jpn. 67, 290 (1998).
http://dx.doi.org/10.1143/JPSJ.67.290
23.
23.S. Yamaguchi, Y. Okimoto, and Y. Tokura, Phys. Rev. B 55, R8666 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R8666
24.
24.C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grüninger, T. Lorenz, P. Reutler, and A. Revcolevschi, Phys. Rev. B 66, 020402(R) (2002).
http://dx.doi.org/10.1103/PhysRevB.66.020402
25.
25.P. G. Radaelli and S. W. Cheong, Phys. Rev. B 66, 094408 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.094408
26.
26.P. Tong, Y. S. Wu, B. Kim, D. Kwon, J. M. Sungil Parak, and B.G. Kim, J. Phys. Soc. Jpn. 78, 034702 (2009).
http://dx.doi.org/10.1143/JPSJ.78.034702
27.
27.K. Oka, M. Azuma, W. Chen, H. Yusa, A.A. Belik, E. Takayama-Muromachi, M. Mizumaki, N. Ishimatsu, N. Hiraoka, M. Tsujimoto, M. G. Tucker, J. P. Attfield, and Y. Shimakawa, J. Am. Chem. Soc. 132, 9438 (2010).
http://dx.doi.org/10.1021/ja102987d
28.
28.J. M. Chen, Y. Y. Chin, M. Valldor, Z. W. Hu, J. M. Lee, S. C. Haw, N. Hiraoka, H. Ishii, C. W. Pao, K. D. Tsuei, J. F. Lee, H. J. Lin, L. Y. Jang, A. Tanaka, C. T. Chen, and L. H. Tjeng, J. Am. Chem. Soc. 136, 1514 (2014).
http://dx.doi.org/10.1021/ja4114006
29.
29.Volker Eyert, Raymond Frésard, and Antoine Maignan, Phys. Rev. B 78, 052402 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.052402
30.
30.Z. Chen, Z. Luo, C. Huang, Y. Qi, P. Yang, L. You, C. Hu, T. Wu, J. Wang, C. Gao, and T. Sritharan, Chen, Adv. Funct. Mater. 21, 133138 (2011).
http://dx.doi.org/10.1002/adfm.201001867
31.
31.K. Saito, A. Ulyanenkov, V. Grossmann, H. Ress, L. Bruegemann, H. Ohta, T. Kurosawa, S. Ueki, and H. Funakubo, Jpn. J. Appl. Phys. 45, 73117314 (2006).
http://dx.doi.org/10.1143/JJAP.45.7311
32.
32.D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S. V. Kalinin, A. P. Baddorf, and A. Gupta, Nano Lett. 10, 25552561 (2010).
http://dx.doi.org/10.1021/nl101187a
33.
33.R. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schom, N. A. Spaldin, L. W. Martin, and R. Ramesh, A Science 326, 977980 (2009).
34.
34.H. Liu, K. Yao, P. Yang, Y. Du, Q. He, Y. Gu, X. Li, S. Wang, and X. Zhou, J. Wang, Phys. Rev. B 82, 064108 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.064108
35.
35.H. W. Jang, S. H. Baek, D. Ortiz, C. M. Folkman, R. R. Das, Y. H. Chu, P. Shafer, J. X. Zhang, S. Choudhury, V. Vaithyanathan, Y. B. Chen, D. A. Felker, M. D. Biegalski, M. S. Rzchowski, X. Q. Pan, D. G. Schlom, L. Q. Chen, R. Ramesh, and C. B. Eom, Phys. Rev. Lett. 101, 107602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.107602
36.
36.H. M. Christen, J. H. Nam, H. S. Kim, A. J. Hatt, and N. A. Spaldin, Phys. Rev. B 83, 144107 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.144107
37.
37.H. Bé a, M. Bibes, A. Barthélé my, K. Bouzehouane, E. Jacquet, A. Khodan, J.-P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, and M. Viret, Appl. Phys. Lett. 87, 072508 (2005).
http://dx.doi.org/10.1063/1.2009808
38.
38.H. Liu, P. Yang, K. Yao, and J. Wang, Appl. Phys. Lett. 98, 102902 (2011).
http://dx.doi.org/10.1063/1.3561757
39.
39.H. Liu, P. Yang, K. Yao, and J. Wang, Appl. Phys. Lett. 96, 012901 (2010).
http://dx.doi.org/10.1063/1.3276543
40.
40.G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, and D. Viehland, Appl. Phys. Lett. 86, 182905 (2005).
http://dx.doi.org/10.1063/1.1924891
41.
41.X. Qi, M. Wi, Y. Lin, Q. Jia, D. Zhi, J. Dho, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 071913 (2005).
http://dx.doi.org/10.1063/1.1866214
42.
42.C J M Daumont, S Farokhipoor, A Ferri, J C Wojdeł, J Iniguez, B J Kooi, and B Noheda, Phys. Rev. B 81, 144115 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.144115
43.
43.K Saito, A Ulyanenkov, V Grossmann, H Ress, L Bruegemann, H Ohta, T Kurosawa, S Ueki, and H Funakubo, Japan. J. Appl. Phys. 45, 7311 (2006).
http://dx.doi.org/10.1143/JJAP.45.7311
44.
44.Y Yang, C M Schlepütz, C Adamo, D G Schlom, and R Clarke, APL Mater. 1, 052102 (2013).
http://dx.doi.org/10.1063/1.4827596
45.
45.J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U.V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 17191722 (2003).
http://dx.doi.org/10.1126/science.1080615
46.
46.D. Ricinschi, K. Yun, and M. J. Okuyama, Phys.: Condens. Matter 18, L97L105 (2006).
http://dx.doi.org/10.1088/0953-8984/18/6/L03
47.
47.H. M. Tütüncü and G. P. Srivastava, Physical Review B 78, 235209 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235209
48.
48.J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G Schlom, Appl. Phys. Lett. 92, 142908 (2008).
http://dx.doi.org/10.1063/1.2901160
49.
49.A. Kokalj, Comp. Mater. Sci. 28, 155 (2003).
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
50.
50.C. Michel, J.-M. Moreau, G. D. Achenbach, R. Gerson, and W. J. James, Solid State Commun. 7, 701 (1969).
http://dx.doi.org/10.1016/0038-1098(69)90597-3
51.
51.F. Kubel and H. Schmid, ActaCrystallogr.; Sect. B: Struct. Sci. 46, 698702 (1990).
http://dx.doi.org/10.1107/S0108768190006887
52.
52.Y. E. Roginska, Y. Y. Tomashpo, Y. N. Venevtse, V. M. Petrov, and G. S. Zhdanov, Sov. Phys. JETP 23, 4751 (1966).
53.
53.S. V. Kiselev, R. P. Ozerov, and G. S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1963).
54.
54.J. R. Teague, R. Gerson, and W. J. James, Solid State Commun. 8(13), 1073 (1970).
http://dx.doi.org/10.1016/0038-1098(70)90262-0
55.
55.V. Eyert, Int. J. Quantum Chem. 77, 1007-1031 (2000).
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:6<1007::AID-QUA8>3.0.CO;2-U
56.
56.V. Eyert, The Augmented Spherical Wave Method- A Comprehensive Treatment, Lect. Notes Phys. (Springer, Berlin Heidelberg, 2013), Vol. 849.
57.
57.V. Eyert, J. Comput. Phys. 124, 271 (1996).
http://dx.doi.org/10.1006/jcph.1996.0059
58.
58.V. Eyert and K.-H. Höck, Phys. Rev. B 57, 12727 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.12727
59.
59.V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
60.
60.A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R5467
61.
61.V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyżyk, and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.16929
62.
62.M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 49, 14211 (1995).
http://dx.doi.org/10.1103/PhysRevB.49.14211
63.
63.I. V. Solovyev, P.H. Dederichs, and V. I. Anisimov, Phys. Rev. B 50, 16861 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.16861
64.
64.I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 48354846 (1982).
http://dx.doi.org/10.1088/0022-3719/15/23/020
65.
65.I. Sosnowska, W. SchÄafer, W. Kockelmann, K. H. Andersen, and I. O. Troyanchuk, Appl. Phys. A 74, S1040 (2002).
http://dx.doi.org/10.1007/s003390201604
66.
66.E. R. Ylvisaker, W. E. Pickett, and K. Koepernik, Phys. Rev. B 79, 035103 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035103
67.
67.Victor Pardo and Warren E. Pickett, Phys. Rev. B 85, 045111 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045111
68.
68.RA Bari and J. Sivardiere, Phys. Rev. B 5, 4466-4471 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.4466
69.
69.P Werner and AJ. Millis, Phys. Rev. Lett. 99, 126405 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.126405
70.
70.J Kunes, AV Lukoyanov, VI Anisimov, RT Scalettar, and WE. Pickett, Nat. Mat. 7, 198-202 (2008).
http://dx.doi.org/10.1038/nmat2115
71.
71.J Kunes, DM Korotin, MA Korotin, VI Anisimov, and P. Werner, Phys. Rev. Lett. 102, 146402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.146402
72.
72.J Kunes, I Leonov, M Kollar, K Byczuk, VI Anisimov, and D. Vollhardt, Eur. Phy. J. Special Topics 180, 5-28 (2009).
http://dx.doi.org/10.1140/epjst/e2010-01209-0
73.
73.J Kunes and V. Krapek, Phys. Rev. Lett. 106, 256401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.256401
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948750
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948750
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948750
2016-05-03
2016-10-01

Abstract

A theoretical study of the possible variation of -orbital occupancy while going from the rhombohedral bulk phase to the strain induced tetragonal phase of BiFeO thin film has been carried out. A possible existence of an intermediate spin (IS) state, S=3/2 and a low spin (LS) state, S=1/2 in the tetragonal phase has been predicted, thereby clearly establishing the role of strain behind the -orbital occupancy.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948750.html;jsessionid=ReL6sjZVx2SLLqBg7DV09YEv.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948750&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948750&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948750'
Right1,Right2,Right3,