Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948752
1.
1.P. Jena and J.A.W. Cattleman, Nanoclusters: A Bridge Across Disciplines (Elsevier, Oxford, 2010).
2.
2.J. Zhao, X. Huang, P. Jin, and Z. Chen, Coord. Chem. Rev. 289-290, 315 (2015).
http://dx.doi.org/10.1016/j.ccr.2014.12.013
3.
3.P.A. Montano and G.K. Shenoy, Solid. State Commun. 35, 53 (1980).
http://dx.doi.org/10.1016/0038-1098(80)90769-3
4.
4.M. Moskovits and D.P. DiLella, J. Chem. Phys. 73, 4917 (1980).
http://dx.doi.org/10.1063/1.440021
5.
5.H. Purdum, P.A. Montano, G.K. Shenoy, and T. Morrison, Phys. Rev. B 25, 4412 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.4412
6.
6.D.M. Cox, D.J. Trevor, R.L. Whetten, E.A. Rohlfing, and A. Kaldor, Phys. Rev. B 32, 7290 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.7290
7.
7.D.G. Leopold and W.C. Lineberger, J. Chem. Phys. 85, 51 (1986).
http://dx.doi.org/10.1063/1.451630
8.
8.L. Lian, C.X. Su, and P.B. Armentrout, J. Chem. Phys. 97, 4072 (1992).
http://dx.doi.org/10.1063/1.463912
9.
9.I.M.L. Billas, J.A. Becker, A. Chatelain, and W.A. de Heer, Phys. Rev. Lett. 71, 4067 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.4067
10.
10.I.M.L. Billas, A. Chatelain, and W.A. de Heer, Science 265, 1682 (1994).
http://dx.doi.org/10.1126/science.265.5179.1682
11.
11.X.G. Gong and Q.Q. Zheng, J. Phys.: Condens. Matter 7, 2421 (1995).
http://dx.doi.org/10.1088/0953-8984/7/12/006
12.
12.I.M.L. Billas, A. Chatelain, and W.A. de Heer, J. Magn. Magn. Mater. 168, 64 (1997).
http://dx.doi.org/10.1016/S0304-8853(96)00694-4
13.
13.M. Sakurai, K. Watanabe, K. Sumiyama, and K. Suzuki, J. Chem. Phys. 111, 235 (1999).
http://dx.doi.org/10.1063/1.479268
14.
14.T.L. Haslett, K.A. Bosnick, S. Fedrigo, and M. Moskovits, J. Chem. Phys. 111, 6456 (1999).
http://dx.doi.org/10.1063/1.480014
15.
15.A. Hirt, D. Gerion, I.M.L. Billas, A. Chatelain, and W.A. de Heer, Phys. Rev. B 62, 7491 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7491
16.
16.P.B. Armentrout, Annu. Rev. Phys. Chem. 52, 423 (2001).
http://dx.doi.org/10.1146/annurev.physchem.52.1.423
17.
17.O. Dieguez, M.M.G. Alemany, C. Rey, P. Ordejon, and L.J. Gallego, Phys. Rev. B 63, 205407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.205407
18.
18.M.B. Knickelbein, Chem. Phys. Lett. 353, 221 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00024-6
19.
19.P. Bobadova-Parvanova, K.A. Jackson, S. Srinivas, M. Horoi, C. Köhler, and G. Seifert, J. Chem. Phys. 116, 3576 (2002).
http://dx.doi.org/10.1063/1.1445113
20.
20.G.L. Gutsev and C.W. Bauschlicher, Jr., J. Phys. Chem. A 107, 7013 (2003).
http://dx.doi.org/10.1021/jp030288p
21.
21.C. Köhler, G. Seifert, and T. Frauenheim, Chem. Phys. 309, 23 (2005).
http://dx.doi.org/10.1016/j.chemphys.2004.03.034
22.
22.S. Li, M.M.G. Alemany, and J.R. Chelikowsky, Phys. Rev. B 73, 233404 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.233404
23.
23.G. Rollmann, P. Entel, and S. Sahoo, Comput. Mater. Sci. 35, 275 (2006).
http://dx.doi.org/10.1016/j.commatsci.2004.09.059
24.
24.M.L. Tiago, Y. Zhou, M.M.G. Alemany, Y. Saad, and J.R. Chelikowsky, Phys. Rev. Lett. 97, 147201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.147201
25.
25.I.A. Gass, C.J. Milios, M. Evangelisti, S.L. Heath, D. Collision, S. Parsons, and E.K. Brechin, Polyhedron 26, 1835 (2007).
http://dx.doi.org/10.1016/j.poly.2006.09.062
26.
26.C. Köhler and T. Frauenheim, J. Comput. Theor. Nanos. 4, 264 (2007).
27.
27.S. Yu, S. Chen, W.W. Zhang, L. Yu, and Y. Yin, Chem. Phys. Lett. 446, 217 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.08.035
28.
28.Q.M. Ma, Z. Xie, J. Wang, Y. Liu, and Y.C. Li, Solid State Commun. 142, 114 (2007).
http://dx.doi.org/10.1016/j.ssc.2006.12.023
29.
29.R. Singh and P. Kroll, Phys. Rev. B 78, 245404 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.245404
30.
30.K. Boufala, L. Fernandez-Seivane, J. Ferrer, and M. Samah, J. Magn. Magn. Mater. 322, 3428 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.06.040
31.
31.D.R. Roy, R. Robles, and S.N. Khan, J. Chem. Phys. 132, 194305 (2010).
http://dx.doi.org/10.1063/1.3425879
32.
32.C. Angeli and R. Cimiraglia, Mol. Phys. 109, 1503 (2011).
http://dx.doi.org/10.1080/00268976.2011.566586
33.
33.S. Datta, M. Kabir, and T. Saha-Dasgupta, Phys. Rev. B 84, 075429 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075429
34.
34.X. Xu, S. Yin, R. Moro, A. Liang, J. Bowlan, and W.A. de Heer, Phys. Rev. Lett. 107, 057203 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.057203
35.
35.Y. Okamoto, F. Kawamura, Y. Ohta, A.J. Page, S. Irle, and K. Morokuma, J. Comput. Theor. Nanos. 8, 1755 (2011).
http://dx.doi.org/10.1166/jctn.2011.1879
36.
36.M. Niemeyer, K. Hirsch, V. Zamudio-Bayer, A. Langenberg, M. Vogel, M. Kossick, C. Ebrecht, K. Egashira, A. Terasaki, T. Möller, B. v. Issendorff, and J.T. Lau, Phys. Rev. Lett. 108, 057201 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.057201
37.
37.K. Cervantes-Salguero and J.M. Seminario, J. Mol. Model. 18, 4043 (2012).
http://dx.doi.org/10.1007/s00894-012-1395-2
38.
38.G.L. Gutsev, C.A. Weatherford, P. Jena, E. Johnson, and B.R. Ramachandran, J. Phys. Chem. A 116, 10218 (2012).
http://dx.doi.org/10.1021/jp307284v
39.
39.G.L. Gutsev, C.A. Weatherford, K.G. Belay, B.R. Ramachandran, and P. Jena, J. Chem. Phys. 138, 164303 (2013).
http://dx.doi.org/10.1063/1.4799917
40.
40.H.K. Yuan, H. Chen, A.L. Kuang, C.L. Tian, and J.Z. Wang, J. Chem. Phys. 139, 034314 (2013).
http://dx.doi.org/10.1063/1.4813611
41.
41.W. Song, M. Jiao, K. Li, Y. Wang, and Z. Wu, Chem. Phys. Lett. 588, 203 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.10.043
42.
42.A. Langenberg, K. Hirsch, A. Lawicki, V. Zamudio-Bayer, M. Niemeyer, P. Chmiela, B. Langbehn, A. Terasaki, B. v. Issendorff, and J.T. Lau, Phys. Rev. B 90, 184420 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.184420
43.
43.E. Kim, A. Mohrland, P.F. Weck, T. Pang, K.R. Czerwinski, and D. Tomanek, Chem. Phys. Lett. 613, 59 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.08.056
44.
44.J. Meyer, M. Tombers, C. van Wüllen, G. Niedner-Schatteburg, S. Peredkov, W. Eberhardt, M. Neeb, S. Palutke, M. Martins, and W. Wurth, J. Chem. Phys. 143, 104302 (2015).
http://dx.doi.org/10.1063/1.4929482
45.
45.C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.152
46.
46.B. Aradi, B. Hourahine, and Th. Frauenheim, J. Phys. Chem. A 111, 5678 (2007).
http://dx.doi.org/10.1021/jp070186p
47.
47.D.J. Wales and J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997).
http://dx.doi.org/10.1021/jp970984n
48.
48.J.P.K. Doye, D.J. Wales, and R.S. Berry, J. Chem. Phys. 103, 4234 (1995).
http://dx.doi.org/10.1063/1.470729
49.
49.J.A. Elliot, Y. Shibuta, and D.J. Wales, Philos. Mag. 89, 3311 (2009).
http://dx.doi.org/10.1080/14786430903270668
50.
50.G. Zheng, H.A. Witek, P. Bobadova-Parvanova, S. Irle, D.G. Musaev, R. Prabhakar, K. Morokuma, M. Lundberg, M. Elstner, C. Köhler, and Th. Frauenheim, J. Chem. Theory Comput. 3, 1349 (2007).
http://dx.doi.org/10.1021/ct600312f
51.
51.M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, and W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010).
http://dx.doi.org/10.1016/j.cpc.2010.04.018
52.
52.M. Dolg, U. Wedig, H. Stoll, and H. Preuss, J. Chem. Phys. 86, 866 (1987).
http://dx.doi.org/10.1063/1.452288
53.
53.V. Rassolov, J.A. Pople, M. Ratner, and T.L. Windus, J. Chem. Phys. 109, 1223 (1998).
http://dx.doi.org/10.1063/1.476673
54.
54.A.D. Becke, Phys. Rev. A 38, 3098 (1988);
http://dx.doi.org/10.1103/PhysRevA.38.3098
54.A.D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
55.
55.C. Lee, W. Yang, and R.G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
56.
56.P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 270 (1985);
http://dx.doi.org/10.1063/1.448799
56.P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 284 (1985);
http://dx.doi.org/10.1063/1.448800
56.P.J. Hay and W.R. Wadt, J. Chem. Phys. 82, 299 (1985).
http://dx.doi.org/10.1063/1.448975
57.
57.M.M. Hurley, L.F. Pacios, P.A. Christiansen, R.B. Ross, and W.C. Ermler, J. Chem. Phys. 84, 6840 (1986).
http://dx.doi.org/10.1063/1.450689
58.
58.F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
59.
59.C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
http://dx.doi.org/10.1063/1.475428
60.
60.Y. Zhao and D.G. Truhlar, J. Phys. Chem. A 109, 5656 (2005).
http://dx.doi.org/10.1021/jp050536c
61.
61.J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
62.
62.J. Tao, J. Perdew, V. Staroverov, and G. Scuseria, Phys. Rev. Let. 91, 146401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.146401
63.
63.C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
http://dx.doi.org/10.1063/1.478522
64.
64.F. Furche and J.P. Perdew, J. Chem. Phys. 124, 044103 (2006).
http://dx.doi.org/10.1063/1.2162161
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948752
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948752
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948752
2016-05-03
2016-12-08

Abstract

We present a study on the structural, electronic, and magnetic properties of Fe(  =  2  −  20) clusters by performing density functional tight binding (DFTB) calculations within a basin hopping (BH) global optimization search followed by density functional theory(DFT) investigations. The structures, total energies and total spin magnetic moments are calculated and compared with previously reported theoretical and experimental results. Two basis sets SDD with ECP and 6-31G** are employed in the DFT calculations together with BLYP GGA exchange-correlation functional. The results indicate that the offered BH-DFTB/DFT strategy collects all the global minima of which different minima have been reported in the previous studies by different groups. Small Fe clusters have three kinds of packing; icosahedral (Fe), centered hexagonal antiprism (Fe, Fe), and truncated decahedral (Fe, Fe). It is obtained in a qualitative agreement with the time of flight mass spectra that the magic numbers for the small Fe clusters are 7, 13, 15, and 19 and with the collision induced dissociation experiments that the sizes 6, 7, 13, 15, and 19 are thermodynamically more stable than their neighboring sizes. The spin magnetic moment per atom of Fe( = 2 − 20) clusters is between 2.4 and 3.6 for the most of the sizes. The antiferromagnetic coupling between the central and the surface atoms of the Fe icosahedron, which have already been reported by experimental and theoretical studies, is verified by our calculations as well. The quantitative disagreements between the calculations and measurements of the magnetic moments of the individual sizes are still to be resolved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948752.html;jsessionid=FreBvYhs1lhUEeBIx-4XKc05.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948752&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948752&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948752'
Right1,Right2,Right3,