Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948794
1.
1.A. Lidow, in Proc. Int. Symp. Power Semicond. Devices ICs, 2015-June (2015), p. 1.
2.
2.R.J. Kaplar, M.J. Marinella, S. DasGupta, M.A. Smith, S. Atcitty, M. Sun, and T. Palacios, in 2012 IEEE Energytech, Energytech 2012 (2012).
3.
3.X. Huang, Z. Liu, Q. Li, and F.C. Lee, in Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC 1279 (2013).
4.
4.I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Devices 62, 414 (2015).
http://dx.doi.org/10.1109/TED.2014.2360861
5.
5.D. Disney, H. Nie, A. Edwards, D. Bour, H. Shah, and I.C. Kizilyalli, in Proc. Int. Symp. Power Semicond. Devices ICs (Kanazawa, 2013), pp. 5962.
6.
6.I.C. Kizilyalli, A.P. Edwards, H. Nie, D. Bour, T. Prunty, and D. Disney, IEEE Electron Device Lett. 35, 247 (2014).
http://dx.doi.org/10.1109/LED.2013.2294175
7.
7.I.C. Kizilyalli, A.P. Edwards, H. Nie, P. Bui-Quang, D. Disney, and D. Bour, IEEE Electron Device Lett. 35, 654 (2014).
http://dx.doi.org/10.1109/LED.2013.2294175
8.
8.I.C. Kizilyalli, T. Prunty, and O. Aktas, 36, 1073 (2015).
9.
9.O. Aktas and I.C. Kizilyalli, IEEE Electron Device Lett. 36, 890 (2015).
http://dx.doi.org/10.1109/LED.2015.2456914
10.
10.I.C. Kizilyalli, A. Edwards, D. Bour, H. Shah, D. Disney, and H. Nie, in 1st IEEE Work. Wide Bandgap Power Devices Appl. WiPDA 2013 - Proc. (Columbus, 2013), pp. 15.
http://dx.doi.org/10.1109/WiPDA.2013.6695550
11.
11.M.P. King, A.M. Armstrong, J.R. Dickerson, G. Vizkelethy, R.M. Fleming, J. Campbell, W.R. Wampler, I.C. Kizilyalli, D.P. Bour, O. Aktas, H. Nie, D. Disney, J. Wierer, S. Member, A.A. Allerman, M.W. Moseley, F. Leonard, A.A. Talin, and R.J. Kaplar, 1 (2015).
12.
12.M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.8132
13.
13.Y.-N. Xu and W. Ching, Phys. Rev. B 48, 4335 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4335
14.
14.Y.C. Yeo, T.C. Chong, and M.F. Li, J. Appl. Phys. 83, 1429 (1998).
http://dx.doi.org/10.1063/1.366847
15.
15.B. Rezaei, a. Asgari, and M. Kalafi, Phys. B Condens. Matter 371, 107 (2006).
http://dx.doi.org/10.1016/j.physb.2005.10.003
16.
16.A.M. Witowski, K. Pakuła, J.M. Baranowski, M.L. Sadowski, and P. Wyder, Appl. Phys. Lett. 75, 4154 (1999).
http://dx.doi.org/10.1063/1.125567
17.
17.P. Perlin, E. Litwin-Staszewska, B. Suchanek, W. Knap, J. Camassel, T. Suski, R. Piotrzkowski, I. Grzegory, S. Porowski, E. Kaminska, and J.C. Chervin, Appl. Phys. Lett. 68, 1114 (1996).
http://dx.doi.org/10.1063/1.115730
18.
18.V.W.L. Chin, T.L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
http://dx.doi.org/10.1063/1.356650
19.
19.J. Kolník, I.H. Oguzman, K.F. Brennan, R. Wang, P.P. Ruden, and Y. Wang, J. Appl. Phys. 78, 1033 (1995).
http://dx.doi.org/10.1063/1.360405
20.
20.N.S. Mansour, K.W. Kim, and M. a. Littlejohn, J. Appl. Phys. 77, 2834 (1995).
http://dx.doi.org/10.1063/1.358696
21.
21.J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, and K.F. Brennan, J. Appl. Phys. 83, 4777 (1998).
http://dx.doi.org/10.1063/1.367269
22.
22.J. Chen, X. Ni, and B. Mo, (2009), 2009 IEEE 8th Int. Conf. ASIC 313.
23.
23.S. Yamakawa, S. Aboud, M. Saraniti, and S.M. Goodnick, Semicond. Sci. Technol. 19, S475 (2004).
http://dx.doi.org/10.1088/0268-1242/19/4/156
24.
24.S. Chen and G. Wang, J. Appl. Phys. 103, 023703 (2008).
http://dx.doi.org/10.1063/1.2828003
25.
25.E. Bellotti, F. Bertazzi, S. Shishehchi, M. Matsubara, and M. Goano, IEEE Trans. Electron Devices 60, 3204 (2013).
http://dx.doi.org/10.1109/TED.2013.2266577
26.
26.S. Shishehchi, F. Bertazzi, and E. Bellotti, J. Appl. Phys. 113, 0 (2013).
http://dx.doi.org/10.1063/1.4807914
27.
27.F. Bertazzi, M. Moresco, and E. Bellotti, J. Appl. Phys. 106, 063718 (2009).
http://dx.doi.org/10.1063/1.3213363
28.
28.M. Westmoreland, P.J. Ward, and P.A. Mawby, Aviation (1832).
29.
29.C.G. Rodrigues, Á. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 102 (2007).
http://dx.doi.org/10.1063/1.2785976
30.
30.H. Harima, T. Inoue, S. Nakashima, K. Furukawa, and M. Taneya, Appl. Phys. Lett. 73, 2000 (1998).
http://dx.doi.org/10.1063/1.122348
31.
31.İ.H. Oğuzman, J. Kolník, K.F. Brennan, R. Wang, T.N. Fang, and P.P. Ruden, J. Appl. Phys. 80, 4429 (1996).
http://dx.doi.org/10.1063/1.363422
32.
32.D.P. Feng, Y. Zhao, and G.Y. Zhang, Phys. Status Solidi a-Applied Res. 176, 1003 (1999).
http://dx.doi.org/10.1002/(SICI)1521-396X(199912)176:2<1003::AID-PSSA1003>3.0.CO;2-G
33.
33.M. Wraback, H. Shen, J.C. Carrano, T. Li, J.C. Campbell, M.J. Schurman, and I.T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000).
http://dx.doi.org/10.1063/1.125968
34.
34.J.M. Barker, R. Akis, T.J. Thornton, D.K. Ferry, and S.M. Goodnick, Phys. Status Solidi Appl. Res. 190, 263 (2002).
http://dx.doi.org/10.1002/1521-396X(200203)190:1<263::AID-PSSA263>3.0.CO;2-U
35.
35.Z.F. Li, W. Lu, H.J. Ye, Z.H. Chen, X.Z. Yuan, H.F. Dou, S.C. Shen, G. Li, and S.J. Chua, J. Appl. Phys. 86, 2691 (1999).
http://dx.doi.org/10.1063/1.371112
36.
36.B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013).
http://dx.doi.org/10.1088/0268-1242/28/7/074011
37.
37.K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, IEEE Electron Device Lett. 20, 608 (1999).
http://dx.doi.org/10.1109/55.806100
38.
38.W. Götz, N.M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys. Lett. 68, 3144 (1996).
http://dx.doi.org/10.1063/1.115805
39.
39.M. Kumar, T.N. Bhat, B. Roul, M.K. Rajpalke, a. T. Kalghatgi, and S.B. Krupanidhi, Mater. Res. Bull. 47, 1306 (2012).
http://dx.doi.org/10.1016/j.materresbull.2012.03.016
40.
40.P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S. Keller, J.S. Speck, S.P. DenBaars, and U.K. Mishra, Appl. Phys. Lett. 73, 975 (1998).
http://dx.doi.org/10.1063/1.122057
41.
41.F. Römer and B. Witzigmann, Appl. Phys. Lett. 106, 021107 (2015).
http://dx.doi.org/10.1063/1.4905870
42.
42.M.G. Cheong, K.S. Kim, C.S. Kim, R.J. Choi, H.S. Yoon, N.W. Namgung, E.K. Suh, and H.J. Lee, Appl. Phys. Lett. 80, 1001 (2002).
http://dx.doi.org/10.1063/1.1448666
43.
43.B. Podor, in Int. Conf. Solid State Cryst. (2000), pp. 299303.
44.
44.K. Sakowski, L. Marcinkowski, S. Krukowski, S. Grzanka, and E. Litwin-Staszewska, J. Appl. Phys. 111 (2012).
http://dx.doi.org/10.1063/1.4730772
45.
45.K. a. Bulashevich and S.Y. Karpov, Phys. Status Solidi Curr. Top. Solid State Phys. 5, 2066 (2008).
46.
46.F. Bertazzi and P. Torino, in Int. Conf. Numer. Simul. Optoelectron. Devices (Palma de Mallorca, 2014), pp. 910.
47.
47.A. Chvála, D. Donoval, and A. Šatka, IEEE Trans. Electron Devices 62, 828 (2015).
http://dx.doi.org/10.1109/TED.2015.2395251
48.
48.E.W. Faraclas and a. F.M. Anwar, Solid. State. Electron. 50, 1051 (2006).
http://dx.doi.org/10.1016/j.sse.2006.04.014
49.
49.O. Hartin, B. Green, and E. Elliot, in Bipolar/BiCMOS Circuits Technol. Meet. (BCTM) (2010), pp. 232236.
50.
50.S. Stoffels, N. Ronchi, B. De Jaeger, D. Marcon, S. Decoutere, S. Strauss, A. Erlebach, and T. Cilento, in IEEE Work. Wide Bandgap Power Devices Appl. (WiPDA), 88 (2013).
51.
51.T.H. Yu and K.F. Brennan, IEEE Trans. Electron Devices 50, 315 (2003).
http://dx.doi.org/10.1109/TED.2002.808558
52.
52.S. Vitanov, V. Palankovski, S. Murad, T. Rödle, R. Quay, and S. Selberherr, in Tech. Dig. - IEEE Compd. Semicond. Integr. Circuit Symp. CSIC 112 (2007).
53.
53.K.H. Baik, Y. Irokawa, F. Ren, S.J. Pearton, S.S. Park, and Y.J. Park, Solid. State. Electron. 47, 1533 (2003).
http://dx.doi.org/10.1016/S0038-1101(03)00071-6
54.
54.Sentaurus Device User (2013).
55.
55.S. Mohammad and H. Morkoç, Prog. Quantum Electron. 20, 361 (1996).
http://dx.doi.org/10.1016/S0079-6727(96)00002-X
56.
56.B. Santic, Semicond. Sci. Technol. 18, 219 (2003).
http://dx.doi.org/10.1088/0268-1242/18/4/305
57.
57.H. Harima, J. Phys. Condens. Matter 14, R967 (2002).
http://dx.doi.org/10.1088/0953-8984/14/38/201
58.
58.C.H. Su, W. Palosz, S. Zhu, S.L. Lehoczky, I. Grzegory, P. Perlin, and T. Suski, J. Cryst. Growth 235, 111 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)01834-6
59.
59.A. Castaldini, A. Cavallini, and L. Polenta, Appl. Phys. Lett. 84, 4851 (2004).
http://dx.doi.org/10.1063/1.1760591
60.
60.B. Monemar, Phys. Rev. B 10, 4 (1974).
http://dx.doi.org/10.1103/PhysRevB.10.676
61.
61.J. Piprek, Nitride Semiconductor Devices: Principles and Simulation (Wiley-VCH verlag, Weinheim, 2007).
62.
62.I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
63.
63.Y.P. Varshni, Physica 34, 149 (1967).
http://dx.doi.org/10.1016/0031-8914(67)90062-6
64.
64.S.L. Rumyanstev, M.S. Shur, and M.E. Levinshte, GaN-Based Mater. Devices (WORLD SCIENTIFIC, 2004), pp. 119.
65.
65.J.W. Huang, T.F. Keuch, H. Lu, and I. Bhat, Appl. Phys. Lett. 68, 2392 (1996).
http://dx.doi.org/10.1063/1.116144
66.
66.S.K. Noh, C.R. Lee, S.E. Park, I.H. Lee, I.H. Choi, S.J. Son, K.Y. Lim, and H.J. Lee, J. Korean Phys. Soc. 32, 851 (1998).
67.
67.P. Kozodoy, H. Xing, S.P. DenBaars, U.K. Mishra, a Saxler, R. Perrin, S. Elhamri, and W. Mitchel, J. Appl. Phys. 87, 1832 (2000).
http://dx.doi.org/10.1063/1.372098
68.
68.E.T. Yu, X.Z. Dang, P.M. Asbeck, S.S. Lau, and G.J. Sullivan, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 17, 1742 (1999).
http://dx.doi.org/10.1116/1.590818
69.
69.F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024(R) (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10024
70.
70.F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 63, 193201 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.193201
71.
71.M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, and P.P. Ruden, IEEE Trans. Electron Devices 48, 535 (2001).
http://dx.doi.org/10.1109/16.906448
72.
72.V.M. Polyakov and F. Schwierz, IEEE Trans. Electron Devices 48, 512 (2001).
http://dx.doi.org/10.1109/16.906444
73.
73.T.T. Mnatsakanov, M.E. Levinshtein, L.I. Pomortseva, S.N. Yurkov, G.S. Simin, and M. a Khan, Solid. State. Electron. 47, 111 (2003).
http://dx.doi.org/10.1016/S0038-1101(02)00256-3
74.
74.F. Schwierz, Solid. State. Electron. 49, 889 (2005).
http://dx.doi.org/10.1016/j.sse.2005.03.006
75.
75.V.O. Turin, Solid. State. Electron. 49, 1678 (2005).
http://dx.doi.org/10.1016/j.sse.2005.09.002
76.
76.C.G. Rodrigues, J.R.L. Fernandez, J.R. Leite, V. a. Chitta, V.N. Freire, a. R. Vasconcellos, and R. Luzzi, J. Appl. Phys. 95, 4914 (2004).
http://dx.doi.org/10.1063/1.1690865
77.
77.K. Kim, M. Cheong, C. Hong, G. Yang, K. Lim, E. Suh, and H. Lee, Appl. Phys. Lett. 76, 1149 (2000).
http://dx.doi.org/10.1063/1.125966
78.
78.J. Mickevičius, M.S. Shur, R.S.Q. Fareed, J.P. Zhang, R. Gaska, and G. Tamulaitis, Appl. Phys. Lett. 87, 1 (2005).
http://dx.doi.org/10.1063/1.2146061
79.
79.E. Bellotti and F. Bertazzi, Nitride Semicond. Devices Princ. Simul. (Wiley-VCH Verlag GmbH & Co. KGaA, 2007), pp. 6993.
80.
80.K. Kodama, H. Tokuda, and M. Kuzuhara, J. Appl. Phys. 114 (2013).
http://dx.doi.org/10.1063/1.4817028
81.
81.E. Bellotti, I.H. Oguzman, J. Kölnik, K.F. Brennan, R. Wang, and P.P. Ruderi, MRS Proc. 468, 457 (1997).
http://dx.doi.org/10.1557/PROC-468-457
82.
82.I.H. Oguzman, E. Bellotti, K.F. Brennan, J. Kolník, R. Wang, and P.P. Ruden, J. Appl. Phys. 81, 7827 (1997).
http://dx.doi.org/10.1063/1.365392
83.
83.W. Maes, K.D.E. Meyer, and R.V.A.N. Overstraeten, Solid. State. Electron. 33, 705 (1990).
http://dx.doi.org/10.1016/0038-1101(90)90183-F
84.
84.E. Kioupakis, Q. Yan, D. Steiauf, and C.G. Van De Walle, New J. Phys. 15 (2013).
http://dx.doi.org/10.1088/1367-2630/15/12/125006
85.
85.S.J. Pearton, R. Cammy, R. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer-Verlag, London, 2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948794
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948794
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948794
2016-05-03
2016-12-04

Abstract

Bulk gallium nitride(GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948794.html;jsessionid=d08bREZbeoolTemHtkU5l6BW.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948794&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948794&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948794'
Right1,Right2,Right3,