Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Muralt, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 47, 903 (2000).
2.N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson et al., J. Appl. Phys. 100, 051606 (2006).
3.D. Damjanovic, Reports on Progress in Physics 61, 1267 (1998).
4.A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in ferroic crystals and thin films (Springer, 2010).
5.J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.-Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C.-H. Yang, J.-C. Yang et al., Phys. Rev. Lett. 105, 197603 (2010).
6.J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, Adv. Mater. 23, 5377 (2011).
7.P. Maksymovych, A. N. Morozovska, P. Yu, E. A. Eliseev, Y.-H. Chu, R. Ramesh, A. P. Baddorf, and S. V. Kalinin, Nano letters 12, 209 (2012).
8.T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, Nat. Commun. 4, 1808 (2013).
9.S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager et al., Nat. Nanotech. 5, 143 (2010).
10.A. Bhatnagar, A. R. Chaudhuri, Y. H. Kim, D. Hesse, and M. Alexe, Nat. Commun. 4, 2835 (2013).
11.N. A. Pertsev and A. G. Zembilgotov, J. Appl. Phys. 78, 6170 (1995).
12.V. G. Koukhar, N. A. Pertsev, and R. Waser, Phys. Rev. B 64, 214103 (2001).
13.Q. Y. Qiu, V. Nagarajan, and S. P. Alpay, Phys. Rev. B 78, 064117 (2008).
14.Q. Y. Qiu, S. P. Alpay, and V. Nagarajan, J. Appl. Phys. 107, 114105 (2010).
15.B. S. Kwak, A. Erbil, J. D. Budai, M. F. Chisholm, L. A. Boatner, and B. J. Wilkens, Phys. Rev. B 49, 14865 (1994).
16.I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gösele, Adv. Mater. 18, 1657 (2006).
17.F. Borodavka, I. Gregora, A. Bartasyte, S. Margueron, V. Plausinaitiene, A. Abrutis, and J. Hlinka, J. Appl. Phys. 113, 187216 (2013).
18.M. Mtebwa, L. Feigl, and N. Setter, in IEEE International Symposium on the Applications of Ferroelectrics and Workshop on the Piezoresponse Force Microscopy (ISAF/PFM) (IEEE, 2013), pp. 7375.
19.J. Chen, H. Lu, H.-J. Liu, Y.-H. Chu, S. Dunn, K. K. Ostrikov, A. Gruverman, and N. Valanoor, Appl. Phys. Lett. 102, 182904 (2013).
20.C. S. Ganpule, V. Nagarajan, H. Li, A. S. Ogale, D. E. Steinhauer, S. Aggarwal, E. Williams, R. Ramesh, and P. De Wolf, Appl. Phys. Lett. 77, 292 (2000).
21.V. Nagarajan, C. S. Ganpule, H. Li, L. Salamanca-Riba, A. L. Roytburd, E. D. Williams, and R. Ramesh, Appl. Phys. Lett. 79, 2805 (2001).
22.L. Feigl, P. Yudin, I. Stolichnov, T. Sluka, K. Shapovalov, M. Mtebwa, C. S. Sandu, X.-K. Wei, K. Tagantsev, and N. Setter, Nat. Commun. 5, 4677 (2014).
23.L. Feigl, L. J. McGilly, and N. Setter, Ferroelectrics 465, 36 (2014).
24.J. Ouyang, J. Slusker, I. Levin, D.-M. Kim, C.-B. Eom, R. Ramesh, and A. L. Roytburd, Adv. Funct. Mater. 17, 2094 (2007).
25.R. Xu, J. Karthik, A. R. Damodaran, and L. W. Martin, Nat. Commun. 5, 3120 (2014).
26.M. Mtebwa, L. Feigl, P. Yudin, L. J. McGilly, K. Shapovalov, A. K. Tagantsev, and N. Setter, Appl. Phys. Lett. 107, 142903 (2015).
27.L. Feigl, L. J. McGilly, A. Crassous, T. Sluka, C. S. Sandu, and N. Setter, Submitted (2016).
28.R. Xu, S. Liu, I. Grinberg, J. Karthik, A. R. Damodaran, A. M. Rappe, and L. W. Martin, Nat. Mater. 14, 79 (2014).
29.K. Lefki and G. J. M. Dormans, J. Appl. Phys. 76, 1764 (1994).
30.A. Biswas, P. B. Rossen, C.-H. Yang, W. Siemons, M.-H. Jung, I. K. Yang, R. Ramesh, and Y. H. Jeong, Appl. Phys. Lett. 98, 051904 (2011).
31.L. Feigl, L. J. McGilly, C. S. Sandu, and N. Setter, Appl. Phys. Lett. 104, 172904 (2014).

Data & Media loading...


Article metrics loading...



While there is extensive literature on the influence of both compressive and tensile strain on the domain patterns of (001) tetragonal ferroelectric thin films, little is known regarding domain engineering in (110) films. The primary reason is the absence of suitable substrates that allow the growth of epitaxial films with this orientation. However, recent works emphasized the importance of this orientation with the possibility for e.g. to achieve ultra-high ferroelectric domain density. This work reports the controlled growth of / domain patterns in highly tetragonal monocrystalline (110) oriented Pb(Zr, Ti)O. It is demonstrated that while / patterns can easily be realized in the single layer film relaxed under compressive misfit strain, modulation of tensile misfit strain through the use of buffer layers allows for consistent control of domain periodicity, in which case the average domain period was tuned between 630 and 60 nm. The effects of domain density and defects on both switching behavior and piezoelectric properties in single and multilayered structures are also investigated, revealing an optimum composition of the buffer layer for improved domain compliance and piezoelectric properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd