Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948798
1.
1.S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
2.S. Singamaneni, V. N. Bliznyuk, C. Binek, and E. Y. Tsymbal, J. Mater. Chem. 21, 16819 (2011).
http://dx.doi.org/10.1039/c1jm11845e
3.
3.J.-M. Hu, Z. Li, L.-Q. Chen, and C.-W. Nan, Adv. Mater. 24, 2869 (2012).
http://dx.doi.org/10.1002/adma.201201004
4.
4.W. Wang, M. Yu, M. Batzill, J. He, U. Diebold, and J. Tang, Phys. Rev. B 73, 134412 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134412
5.
5.S. Sun and H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).
http://dx.doi.org/10.1021/ja026501x
6.
6.J. Mohapatra, A. Mitra, D. Bahadur, and M. Aslam, CrystEngComm 15, 524 (2013).
http://dx.doi.org/10.1039/C2CE25957E
7.
7.S. Kohiki, T. Kinoshita, K. Nara, K. Akiyama-Hasegawa, and M. Mitome, ACS Appl. Mater. Interfaces 5, 11584 (2013).
http://dx.doi.org/10.1021/am402630r
8.
8.H. Zeng, C. T. Black, R. L. Sandstrom, P. M. Rice, C. B. Murray, and S. Sun, Phys. Rev. B 73, 020402 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.020402
9.
9.P. Anil Kumar, S. Ray, S. Chakraverty, and D. D. Sarma, Appl. Phys. Lett. 103, 102406 (2013).
http://dx.doi.org/10.1063/1.4819956
10.
10.C. T. Black, C. B. Murray, R. L. Sandstrom, and S. Sun, Science 290, 1131 (2000).
http://dx.doi.org/10.1126/science.290.5494.1131
11.
11.S. Wang, F. J. Yue, D. Wu, F. M. Zhang, W. Zhong, and Y. W. Du, Appl. Phys. Lett. 94, 012507 (2009).
http://dx.doi.org/10.1063/1.3059571
12.
12.A. Mitra, J. Mohapatra, S. S. Meena, C. V. Tomy, and M. Aslam, The Journal of Physical Chemistry C 118, 19356 (2014).
http://dx.doi.org/10.1021/jp501652e
13.
13.S. Bedanta and W. Kleemann, Journal of Physics D: Applied Physics 42, 013001 (2008).
http://dx.doi.org/10.1088/0022-3727/42/1/013001
14.
14.G. Salazar-Alvarez, J. Qin, V. Šepelák, I. Bergmann, M. Vasilakaki, K. N. Trohidou, J. D. Ardisson, W. A. A. Macedo, M. Mikhaylova, M. Muhammed, M. D. Baró, and J. Nogués, J. Am. Chem. Soc. 130, 13234 (2008).
http://dx.doi.org/10.1021/ja0768744
15.
15.See supplementary material at http://dx.doi.org/10.1063/1.4948798 for experimental section, phase and morphological analysis.[Supplementary Material]
16.
16.J. Mohapatra, A. Mitra, H. Tyagi, D. Bahadur, and M. Aslam, Nanoscale 7, 9174 (2015).
http://dx.doi.org/10.1039/C5NR00055F
17.
17.A. D. Arelaro, A. L. Brandl, J. E. Lima, L. F. Gamarra, G. E. S. Brito, W. M. Pontuschka, and G. F. Goya, J. Appl. Phys. 97, 10J316 (2005).
http://dx.doi.org/10.1063/1.1853931
18.
18.T. J. Daou, J. M. Grenèche, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, and S. Begin-Colin, Chemistry of Materials 20, 5869 (2008).
http://dx.doi.org/10.1021/cm801405n
19.
19.H. Qiu, L. Pan, L. Li, H. Zhu, X. Zhao, M. Xu, L. Qin, and J. Q. Xiao, Journal of Applied Physics 102 (2007).
20.
20.J. C. Slonczewski, Phys. Rev. B 39, 6995 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.6995
21.
21.J. M. MacLaren, X. G. Zhang, and W. H. Butler, Phys. Rev. B 56, 11827 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.11827
22.
22.M. Kurahashi, X. Sun, and Y. Yamauchi, Physical Review B 81, 193402 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.193402
23.
23.J. Inoue and S. Maekawa, Phys. Rev. B 53, R11927 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R11927
24.
24.P. Poddar, T. Fried, and G. Markovich, Phys. Rev. B 65, 172405 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.172405
25.
25.M. Ziese, Appl. Phys. Lett. 80, 2144 (2002).
http://dx.doi.org/10.1063/1.1462870
26.
26.S. Ju, K. W. Yu, and Z. Y. Li, Phys. Rev. B 71, 014416 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014416
27.
27.S. Mørup, C. Frandsen, and M. F. Hansen, Beilstein journal of nanotechnology 1, 48 (2010).
http://dx.doi.org/10.3762/bjnano.1.6
28.
28.J. Santoyo Salazar, L. Perez, O. de Abril, L. Truong Phuoc, D. Ihiawakrim, M. Vazquez, J.-M. Greneche, S. Begin-Colin, and G. Pourroy, Chem. Mater. 23, 1379 (2011).
http://dx.doi.org/10.1021/cm103188a
29.
29.N. Viarta, G. Pourroya, and J.-M. Grenechea, Eu r. Phy s. J. 18, 33 (2002).
30.
30.T. Yamada, H. Yamada, A. J. Lohn, and N. P. Kobayashi, Nanotechnology 22, 055201 (2011).
http://dx.doi.org/10.1088/0957-4484/22/5/055201
31.
31.T. Sugawara and M. M. Matsushita, J. Mater. Chem. 19, 1738 (2009).
http://dx.doi.org/10.1039/b818851n
32.
32.S. Horikoshi, H. Abe, T. Sumi, K. Torigoe, H. Sakai, N. Serpone, and M. Abe, Nanoscale 3, 1697 (2011).
http://dx.doi.org/10.1039/c0nr00861c
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948798
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948798
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948798
2016-05-03
2016-12-09

Abstract

We have observed large tunnelingMagnetoresistance(TMR) in amine functionalized octahedral nanoparticle assemblies. Amine monolayer on the surface of nanoparticles acts as an insulating barrier between the semimetal FeOnanoparticles and provides multiple tunnel junctions where inter-granular tunneling is plausible. The tunnelingmagnetoresistance recorded at room temperature is 38% which increases to 69% at 180 K. When the temperature drops below 150 K, coulomb staircase is observed in the current versus voltage characteristics as the charging energy exceeds the thermal energy. A similar study is also carried out with spherical nanoparticles. A 24% TMR is recorded at room temperature which increases to 41% at 180 K for spherical particles. Mössbauer spectra reveal better stoichiometry for octahedral particles which is attainable due to lesser surface disorder and strong amine coupling at the <111> facets of octahedral FeOnanoparticles. Less stoichiometric defect in octahedral nanoparticles leads to a higher value of spin polarization and therefore larger TMR in octahedral nanoparticles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948798.html;jsessionid=3Xyk54PiApBj2XbiTXRqPITb.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948798&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948798&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948798'
Right1,Right2,Right3,