Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948964
1.
J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, Nature materials 9(9), 762 (2010).
http://dx.doi.org/10.1038/nmat2814
2.
Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, and J. Poortmans, AIP Advances 4, 057122 (2014).
http://dx.doi.org/10.1063/1.4879807
3.
M. J. M. Pathak, J. M. Pearce, and S. J. Harrison, Solar Energy Materials and Solar Cells 100, 199 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.01.015
4.
T. T. Chow, Applied Energy 87(2), 365 (2010).
http://dx.doi.org/10.1016/j.apenergy.2009.06.037
5.
M. J. Chow, A. A. Fomani, M. Moradi, G. Chaji, R. A. Lujan, and W. S. Wong, Applied Physics Letters 102(23), 233509 (2013).
http://dx.doi.org/10.1063/1.4811271
6.
D. Deligiannis, R. Vasudevan, A. H. M. Smets, R. A. C. M. M. van Swaaij, and M. Zeman, AIP Advances 5, 097165 (2015).
http://dx.doi.org/10.1063/1.4931821
7.
J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S.T. Connor, Q. Wang, Y. Xu, M. McGehee, S. Fan, and Y. Cui, Nano letters 9, 279 (2009).
http://dx.doi.org/10.1021/nl802886y
8.
M. Agrawal and P. Peumans, Opt Express 16, 5385 (2008).
http://dx.doi.org/10.1364/OE.16.005385
9.
E. Garnett and P. Yang, Nano Letters 10, 1082 (2010).
http://dx.doi.org/10.1021/nl100161z
10.
P. Campbell and M. A. Green, Solar Energy Materials & Solar Cells 65, 369 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00115-X
11.
P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, Opt Express 15, 16986 (2007).
http://dx.doi.org/10.1364/OE.15.016986
12.
Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, Small 6, 984 (2010).
http://dx.doi.org/10.1002/smll.201000079
13.
V. K. Narasimha and Y. Cui, Nanophotonics 2, 187 (2013).
14.
C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, Light: Science & Applications 3, e161 (2014).
http://dx.doi.org/10.1038/lsa.2014.42
15.
Y. Wan, K. R. McIntosh, and A. F. Thomson, AIP Advances 3, 032113 (2013).
http://dx.doi.org/10.1063/1.4795108
16.
S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, Journal of Applied Physics 101, 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
17.
H. R. Stuart and D. G. Hall, Applied Physics Letters 69, 2327 (1996).
http://dx.doi.org/10.1063/1.117513
18.
D. M. Schaadt, B. Feng, and E. T. Yu, Applied Physics Letters 86, 063106 (2005).
http://dx.doi.org/10.1063/1.1855423
19.
K. Islam, A. Alnuaimi, E. Battal, A. K. Okyay, and A. Nayfeh, Solar Energy 103, 263 (2014).
http://dx.doi.org/10.1016/j.solener.2014.02.023
20.
J. D. Winans, C. Hungerford, K. Shome, L. J. Rothberg, and P.M. Fauchet, Opt Express 23, A92 (2015).
http://dx.doi.org/10.1364/OE.23.000A92
21.
Y. C. Tsao, C. Fisker, and T. G. Pedersen, Opt Express 22(Suppl 3), A651 (2014).
http://dx.doi.org/10.1364/OE.22.00A651
22.
F. X. Chen, X. C. Wang, D. L. Xia, and L. S. Wang, AIP Advances 5, 097129 (2015).
http://dx.doi.org/10.1063/1.4930957
23.
S. Lombardo, C. Tringali, G. Cannella, A. Battaglia, M. Foti, N. Costa, F. Principato, and C. Gerardi, Applied Physics Letters 101, 123902 (2012).
http://dx.doi.org/10.1063/1.4753936
24.
S. Lombardo, A. Battaglia, M. Foti, C. Tringali, G. Cannella, N. Costa, C. Gerardi, and F. Principato, Energy Procedia 44, 216 (2014).
http://dx.doi.org/10.1016/j.egypro.2013.12.030
25.
T. Lerond, J. Proust, H. Y. Lelièvre, D. Gérard, and J. Plain, Applied Physics Letters 99, 123110 (2011).
http://dx.doi.org/10.1063/1.3643057
26.
A. Herman, C. Trompoukis, V. Depauw, O.E. Daif, and O. Deparis, Journal of Applied Physics 112, 113107 (2012).
http://dx.doi.org/10.1063/1.4768529
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948964
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948964
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948964
2016-05-23
2016-09-29

Abstract

We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under light illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948964.html;jsessionid=lQ28iP9ic90GKVrrn_EaJRBj.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948964&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948964&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948964'
Right1,Right2,Right3,