Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948982
1.
1.R. Chen, D. Li, B. Liu, Z. Peng, G. G. Gurzadyan, Q. Xiong, and H. Sun, Nano Lett. 10, 4956 (2010).
http://dx.doi.org/10.1021/nl102987z
2.
2.D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. 84, 2841 (1998).
http://dx.doi.org/10.1063/1.368425
3.
3.S. Datta, M. Kabir, and T. Saha-Dasgupta, Phys. Rev. B 86, 115307 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115307
4.
4.Z. Yang, D. Gao, Z. Zhu, J. Zhang, Z. Shi, Z. Zhang, and D. Xue, Nanoscale Res. Lett. 8, 1 (2013).
http://dx.doi.org/10.1186/1556-276X-8-1
5.
5.C.-H. Lai, M.-Y. Lu, and L.-J. Chen, J. Mater. Chem. 22, 19 (2012).
http://dx.doi.org/10.1039/C1JM13879K
6.
6.M. R. Kim, S.-Y. Park, and D.-J. Jang, J. Phys. Chem. C 114, 6452 (2010).
http://dx.doi.org/10.1021/jp100834f
7.
7.Y. Sun, C. Qian, K. Peng, Z. Bai, J. Tang, Y. Zhao, S. Wu, H. Ali, F. Song, and H. Zhong, Appl. Phys. Lett. 108, 041106 (2016).
http://dx.doi.org/10.1063/1.4941028
8.
8.M. Hafeez, S. Rehman, U. Manzoor, M. Khan, and A. Bhatti, Phys. Chem. Chem. Phys. 15, 9726 (2013).
http://dx.doi.org/10.1039/c3cp50534k
9.
9.S. Bhattacharya and D. Chakravorty, Chem. Phys. Lett. 444, 319 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.07.040
10.
10.J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Švorčík, Nanoscale Res. Lett. 6, 9 (2011).
11.
11.S. S. Nair and M. A. Khadar, Sci. Technol. Adv. Mater. 9, 1 (2016).
12.
12.C. Tiwary, P. Kumbhakar, A. Mitra, and K. Chattopadhyay, Journal of Luminescence 129, 1366 (2009).
http://dx.doi.org/10.1016/j.jlumin.2009.07.004
13.
13.J. M. Azpiroz, E. Mosconi, J. M. Ugalde, and F. De Angelis, J. Phys. Chem. C 118, 3274 (2014).
http://dx.doi.org/10.1021/jp409182r
14.
14.H.-Y. Lu, S.-Y. Chu, and S.-S. Tan, Journal of Crystal Growth 269, 385 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.05.050
15.
15.R. Seoudi, A. Shabaka, W. Eisa, B. Anies, and N. Farage, Physica B: Condensed Matter 405, 919 (2010).
http://dx.doi.org/10.1016/j.physb.2009.10.015
16.
16.R. K. Chandrakar, R. Baghel, V. Chandra, and B. Chandra, Superlattices and Microstructures 86, 256 (2015).
http://dx.doi.org/10.1016/j.spmi.2015.07.043
17.
17.Z.-X. Yang, W. Zhong, Y. Deng, C. Au, and Y.-W. Du, Nanoscale Res. Lett. 5, 1124 (2010).
http://dx.doi.org/10.1007/s11671-010-9612-3
18.
18.S. Srivastava, S. Mishra, R. Yadav, R. Srivastava, A. Panday, and S. Prakash, Digest Journal of Nanomaterials & Biostructures (DJNB) 5, 161 (2010).
19.
19.H. Peng, B. Liuyang, Y. Lingjie, L. Jinlin, Y. Fangli, and C. Yunfa, Nanoscale Res. Lett. 4, 1047 (2009).
http://dx.doi.org/10.1007/s11671-009-9358-y
20.
20.J. K. Kim, J. H. Song, H. Choi, S. J. Baik, and S. Jeong, J. Appl.Phys. 115, 054302 (2014).
http://dx.doi.org/10.1063/1.4863725
21.
21.Z. Imran, M. Rafiq, and M. Hasan, AIP Advances 4 4, 067137 (2014).
http://dx.doi.org/10.1063/1.4885462
22.
22.K. Hayat, M. Rafiq, A. ur Rahman, A. A. Khan, and M. Hasan, Progress in Natural Science: Materials International 23, 388 (2013).
http://dx.doi.org/10.1016/j.pnsc.2013.06.016
23.
23.A. Pal and P. Khare, Journal of Electrostatics 71, 976 (2013).
http://dx.doi.org/10.1016/j.elstat.2013.09.005
24.
24.A. Rakhshani, Y. Makdisi, and X. Mathew, Journal of Materials Science: Materials in Electronics 8, 207 (1997).
http://dx.doi.org/10.1023/A:1018506516020
25.
25.A. M. Katzenmeyer, F. Léonard, A. A. Talin, P.-S. Wong, and D. L. Huffaker, Nano Lett. 10, 4935 (2010).
http://dx.doi.org/10.1021/nl102958g
26.
26.L. Yin, D. Wang, J. Huang, L. Cao, H. Ouyang, and X. Yong, Journal of Alloys and Compounds 664, 476 (2016).
http://dx.doi.org/10.1016/j.jallcom.2015.10.281
27.
27.Y. Zhang and Y. Li, J. Phys. Chem. B 108, 17805 (2004).
http://dx.doi.org/10.1021/jp047446c
28.
28.A. K. Thottoli and A. K. Achuthanunni, Journal of Nanostructure in Chemistry 3, 1 (2013).
http://dx.doi.org/10.1007/978-3-642-31960-0_1
29.
29.A. K. Kole, C. S. Tiwary, and P. Kumbhakar, J. Mater.Chem. C 2, 4338 (2014).
http://dx.doi.org/10.1039/c4tc00091a
30.
30.H. Ali, S. Karim, M. Rafiq, K. Maaz, A. ur Rahman, A. Nisar, and M. Ahmad, Journal of Alloys and Compounds 612, 64 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.05.163
31.
31.M. Ramana Reddy, K. N. Reddy, U. Subba Rao, and J. S. Kumar, J. Mater. Sci. Lett. 6, 1190 (1987).
http://dx.doi.org/10.1007/BF01729178
32.
32.J. G. Simmons, Phys. Rev. 155, 657 (1967).
http://dx.doi.org/10.1103/PhysRev.155.657
33.
33.H. Wang, Y. Bai, X. Ning, and Z. Wang, RSC Advances 5, 104203 (2015).
http://dx.doi.org/10.1039/C5RA22404G
34.
34.M. Shareefuddin, K. N. Reddy, and M. N. Chary, Journal of Alloys and Compounds 194, L1 (1993).
http://dx.doi.org/10.1016/0925-8388(93)90632-W
35.
35.M. El-Samanoudy, Applied Surface Science 207, 219 (2003).
http://dx.doi.org/10.1016/S0169-4332(02)01365-X
36.
36.J. Meera, V. Sumithra, R. Seethu, and J. Prajeshkumar, Acad. Rev 1, 93 (2010).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948982
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948982
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948982
2016-05-05
2016-12-02

Abstract

We report the synthesis and electrical transport mechanism in ZnSsemiconductornanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltagecharacteristics. The experimental value of barrier lowering coefficient lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient showing Richardson-Schottky emission has been responsible for conduction in ZnSnanoparticles for the temperature range studied.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948982.html;jsessionid=c8FZtwoVpCnY-CT-w5iq7SOa.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948982&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948982&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948982'
Right1,Right2,Right3,