Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, Nature 411, 54 (2001).
2.K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, and T. Kanomata, Phys. Rev. B 63, 024426 (2000).
3.B. S. Wang, P. Tong, Y. P. Sun, L. J. Li, W. Tang, W. J. Lu, X. B. Zhu, Z. R. Yang, and W. H. Song, Appl. Phys. Lett. 95, 222509 (2009).
4.M.-H. Yu, L. H. Lewis, and A. R. Moodenbaugh, J. Appl. Phys. 93, 10128 (2003).
5.S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, Phys. Rev. Lett. 101, 205901 (2008).
6.K. Takenaka and H. Takagi, Appl. Phys. Lett. 87, 261902 (2005).
7.J. C. Lin, P. Tong, W. Tong, S. Lin, B. S. Wang, W. H. Song, Y. M. Zou, and Y. P. Sun, Appl. Phys. Lett. 106, 082405 (2015).
8.K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe, and C. Urano, Appl. Phys. Lett. 98, 022103 (2011).
9.E. O. Chi, W. S. Kim, and N. H. Hur, Solid State Commun. 120, 307 (2001).
10.K. Asano, K. Koyama, and K. Takenaka, Appl. Phys. Lett. 92, 161909 (2008).
11.D. Matsunami, A. Fujita, K. Takenaka, and M. Kano, Nat. Mater. 14, 73 (2015).
12.S. Dhar, O. Brandt, A. Trampert, K. J. Friedland, Y. J. Sun, and K. H. Ploog, Phys. Rev. B 67, 165205 (2003).
13.B. Song, J. Jian, H. Bao, M. Lei, H. Li, G. Wang, Y. Xu, and X. Chen, Appl. Phys. Lett. 92, 192511 (2008).
14.R. Huang, L. Li, Z. Wu, X. Chu, X. Xu, and L. Qian, Solid State Commun. 150, 1617 (2010).
15.X. H. Zhang, Q. Yuan, J. C. Han, J. G. Zhao, J. K. Jian, Z. H. Zhang, and B. Song, Appl. Phys. Lett. 103, 022405 (2013).
16.L. Ding, C. Wang, Y. Sun, C. V. Colin, and L. Chu, J. Appl. Phys. 117, 213915 (2015).
17.W. H. Cao, B. He, C. Z. Liao, L. H. Yang, L. M. Zeng, and C. Dong, J. Solid State Chem. 182, 3353 (2009).
18.S. Lin, D. F. Shao, J. C. Lin, L. Zu, X. C. Kan, B. S. Wang, Y. N. Huang, W. H. Song, W. J. Lu, P. Tong, and Y. P. Sun, J. Mater. Chem. C 3, 5683 (2015).
19.B. S. Wang, P. Tong, Y. P. Sun, X. B. Zhu, Z. R. Yang, W. H. Song, and J. M. Dai, Appl. Phys. Lett. 97, 042508 (2010).
20.Y. Sun, C. Wang, Q. Huang, Y. Guo, L. Chu, M. Arai, and K. Yamaura, Inorg. Chem. 51, 7232 (2012).
21.S. K. Chen, S. Jin, T. H. Tiefel, Y. F. Hsieh, E. M. Gyorgy, and D. W. Johnson, J. Appl. Phys. 70, 6247 (1991).
22.C. Guillard, H. Creveaux, and C. R. Hebd, Seances Acad. Sci. 222, 1170 (1946).
23.T. Scholz and R. Dronskowski, Inorg. Chem. 54, 8800 (2015).
24.J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, Washington DC, 1996).
25.M. Piecuch, C. Janot, G. Marchal, and M. Vergnat, Phys. Rev. B 28, 1480 (1983).
26.J. Burghaus, M. T. Sougrati, A. Möchel, A. Houben, R. P. Hermann, and R. Dronskowski, J. Solid State Chem. 184, 2315 (2011).
27.J. Burghaus, M. Wessel, A. Houben, and R. Dronskowski, Inorg. Chem. 49, 10148 (2010).
28.A. Houben, V. Šepelák, K.-D. Becker, and R. Dronskowski, Chem. Mater. 21, 784 (2009).
29.S. Liu, Phys. Rev. B 15, 4281 (1977).
30.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
31.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
32.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
33.G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
34.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
35.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
36.R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).
37.V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011).
38.S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 34, 2557 (2013).
39.S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 37, 1030 (2016; see also
40.B. C. Frazer, Physical Review 112, 751 (1958).
41.P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
42.K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
43.L. E. Wenger, in Heidelberg Colloquium on Spin Glasses, edited by J. L. Hemmen and I. Morgenstern (Springer, Berlin, Heidelberg, 1983), p. 60.
44.C. Dekker, A. F. M. Arts, H. W. de Wijn, A. J. van Duyneveldt, and J. A. Mydosh, Phys. Rev. Lett. 61, 1780 (1988).
45.O. Petracic, A. Glatz, and W. Kleemann, Phys. Rev. B 70, 214432 (2004).
46.J. Burghaus, J. Kleemann, and R. Dronskowski, Z. Anorg. Allg. Chem. 637, 935 (2011).
47.D. Music, J. Burghaus, T. Takahashi, R. Dronskowski, and J. M. Schneider, Eur. Phys. J. B 77, 401 (2010).
48.E. C. Stoner, Proc. Roy. Soc. Lond. A 154, 656 (1936).
49.E. C. Stoner, Proc. Roy. Soc. Lond. A 165, 372 (1938).
50.J. Hubbard, Proc. Roy. Soc. Lond. A 276, 238 (1963).
51.M. Meinert, J. Phys.: Condens. Matter 28, 056006 (2016).

Data & Media loading...


Article metrics loading...



Based on comprehensive experimental and quantum-theoretical investigations, we identify SnFeN as a canonical spin glass and the first ternary iron nitride with a frustrated spin ground state. SnFeN is the end member of the solid solution SnFeN (0 < x ≤ 0.9) derived from ferromagnetic′-FeN. Within the solid solution, the gradual incorporation of tin is accompanied by a drastic weakening of the ferromagnetic interactions. To explore the dilution of the ferromagnetic coupling, the highly tin-substituted SnFeN has been magnetically reinvestigated. DC magnetometry reveals diverging susceptibilities for FC and ZFC measurements at low temperatures and an unsaturated hysteretic loop even at high magnetic fields. The temperature dependence of the real component of the ACsusceptibility at different frequencies proves the spin-glasstransition with the characteristic parameters   =  12.83(6) K, * = 10−11.8(2) s, = 5.6(1) and Δ/( ⋅ Δlg) = 0.015. The time-dependent response of the magnetic spins to the external field has been studied by extracting the distribution function of relaxation times(, ) up to from the complex plane of ACsusceptibilities. The weakening of the ferromagnetic coupling by substituting tin into ′-FeN is explained by the Stoner criterion on the basis of electronic structure calculations and a quantum-theoretical bonding analysis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd