Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4948984
1.
1.T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, Nature 411, 54 (2001).
http://dx.doi.org/10.1038/35075014
2.
2.K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, and T. Kanomata, Phys. Rev. B 63, 024426 (2000).
http://dx.doi.org/10.1103/PhysRevB.63.024426
3.
3.B. S. Wang, P. Tong, Y. P. Sun, L. J. Li, W. Tang, W. J. Lu, X. B. Zhu, Z. R. Yang, and W. H. Song, Appl. Phys. Lett. 95, 222509 (2009).
http://dx.doi.org/10.1063/1.3268786
4.
4.M.-H. Yu, L. H. Lewis, and A. R. Moodenbaugh, J. Appl. Phys. 93, 10128 (2003).
http://dx.doi.org/10.1063/1.1574591
5.
5.S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, Phys. Rev. Lett. 101, 205901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.205901
6.
6.K. Takenaka and H. Takagi, Appl. Phys. Lett. 87, 261902 (2005).
http://dx.doi.org/10.1063/1.2147726
7.
7.J. C. Lin, P. Tong, W. Tong, S. Lin, B. S. Wang, W. H. Song, Y. M. Zou, and Y. P. Sun, Appl. Phys. Lett. 106, 082405 (2015).
http://dx.doi.org/10.1063/1.4913663
8.
8.K. Takenaka, A. Ozawa, T. Shibayama, N. Kaneko, T. Oe, and C. Urano, Appl. Phys. Lett. 98, 022103 (2011).
http://dx.doi.org/10.1063/1.3541449
9.
9.E. O. Chi, W. S. Kim, and N. H. Hur, Solid State Commun. 120, 307 (2001).
http://dx.doi.org/10.1016/S0038-1098(01)00395-7
10.
10.K. Asano, K. Koyama, and K. Takenaka, Appl. Phys. Lett. 92, 161909 (2008).
http://dx.doi.org/10.1063/1.2917472
11.
11.D. Matsunami, A. Fujita, K. Takenaka, and M. Kano, Nat. Mater. 14, 73 (2015).
http://dx.doi.org/10.1038/nmat4117
12.
12.S. Dhar, O. Brandt, A. Trampert, K. J. Friedland, Y. J. Sun, and K. H. Ploog, Phys. Rev. B 67, 165205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.165205
13.
13.B. Song, J. Jian, H. Bao, M. Lei, H. Li, G. Wang, Y. Xu, and X. Chen, Appl. Phys. Lett. 92, 192511 (2008).
http://dx.doi.org/10.1063/1.2931058
14.
14.R. Huang, L. Li, Z. Wu, X. Chu, X. Xu, and L. Qian, Solid State Commun. 150, 1617 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.06.041
15.
15.X. H. Zhang, Q. Yuan, J. C. Han, J. G. Zhao, J. K. Jian, Z. H. Zhang, and B. Song, Appl. Phys. Lett. 103, 022405 (2013).
http://dx.doi.org/10.1063/1.4813412
16.
16.L. Ding, C. Wang, Y. Sun, C. V. Colin, and L. Chu, J. Appl. Phys. 117, 213915 (2015).
http://dx.doi.org/10.1063/1.4921537
17.
17.W. H. Cao, B. He, C. Z. Liao, L. H. Yang, L. M. Zeng, and C. Dong, J. Solid State Chem. 182, 3353 (2009).
http://dx.doi.org/10.1016/j.jssc.2009.10.002
18.
18.S. Lin, D. F. Shao, J. C. Lin, L. Zu, X. C. Kan, B. S. Wang, Y. N. Huang, W. H. Song, W. J. Lu, P. Tong, and Y. P. Sun, J. Mater. Chem. C 3, 5683 (2015).
http://dx.doi.org/10.1039/C5TC00423C
19.
19.B. S. Wang, P. Tong, Y. P. Sun, X. B. Zhu, Z. R. Yang, W. H. Song, and J. M. Dai, Appl. Phys. Lett. 97, 042508 (2010).
http://dx.doi.org/10.1063/1.3469924
20.
20.Y. Sun, C. Wang, Q. Huang, Y. Guo, L. Chu, M. Arai, and K. Yamaura, Inorg. Chem. 51, 7232 (2012).
http://dx.doi.org/10.1021/ic300978x
21.
21.S. K. Chen, S. Jin, T. H. Tiefel, Y. F. Hsieh, E. M. Gyorgy, and D. W. Johnson, J. Appl. Phys. 70, 6247 (1991).
http://dx.doi.org/10.1063/1.350010
22.
22.C. Guillard, H. Creveaux, and C. R. Hebd, Seances Acad. Sci. 222, 1170 (1946).
23.
23.T. Scholz and R. Dronskowski, Inorg. Chem. 54, 8800 (2015).
http://dx.doi.org/10.1021/acs.inorgchem.5b01510
24.
24.J. A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, London, Washington DC, 1996).
25.
25.M. Piecuch, C. Janot, G. Marchal, and M. Vergnat, Phys. Rev. B 28, 1480 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.1480
26.
26.J. Burghaus, M. T. Sougrati, A. Möchel, A. Houben, R. P. Hermann, and R. Dronskowski, J. Solid State Chem. 184, 2315 (2011).
http://dx.doi.org/10.1016/j.jssc.2011.06.031
27.
27.J. Burghaus, M. Wessel, A. Houben, and R. Dronskowski, Inorg. Chem. 49, 10148 (2010).
http://dx.doi.org/10.1021/ic1016033
28.
28.A. Houben, V. Šepelák, K.-D. Becker, and R. Dronskowski, Chem. Mater. 21, 784 (2009).
http://dx.doi.org/10.1021/cm803004v
29.
29.S. Liu, Phys. Rev. B 15, 4281 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.4281
30.
30.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
31.
31.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
32.
32.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
33.
33.G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
34.
34.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
35.
35.H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
36.
36.R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).
http://dx.doi.org/10.1021/j100135a014
37.
37.V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011).
http://dx.doi.org/10.1021/jp202489s
38.
38.S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 34, 2557 (2013).
http://dx.doi.org/10.1002/jcc.23424
39.
39.S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, J. Comput. Chem. 37, 1030 (2016; see also www.cohp.de.
http://dx.doi.org/10.1002/jcc.24300
40.
40.B. C. Frazer, Physical Review 112, 751 (1958).
http://dx.doi.org/10.1103/PhysRev.112.751
41.
41.P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
http://dx.doi.org/10.1103/RevModPhys.49.435
42.
42.K. S. Cole and R. H. Cole, J. Chem. Phys. 9, 341 (1941).
http://dx.doi.org/10.1063/1.1750906
43.
43.L. E. Wenger, in Heidelberg Colloquium on Spin Glasses, edited by J. L. Hemmen and I. Morgenstern (Springer, Berlin, Heidelberg, 1983), p. 60.
44.
44.C. Dekker, A. F. M. Arts, H. W. de Wijn, A. J. van Duyneveldt, and J. A. Mydosh, Phys. Rev. Lett. 61, 1780 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1780
45.
45.O. Petracic, A. Glatz, and W. Kleemann, Phys. Rev. B 70, 214432 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.214432
46.
46.J. Burghaus, J. Kleemann, and R. Dronskowski, Z. Anorg. Allg. Chem. 637, 935 (2011).
http://dx.doi.org/10.1002/zaac.201000409
47.
47.D. Music, J. Burghaus, T. Takahashi, R. Dronskowski, and J. M. Schneider, Eur. Phys. J. B 77, 401 (2010).
http://dx.doi.org/10.1140/epjb/e2010-00287-x
48.
48.E. C. Stoner, Proc. Roy. Soc. Lond. A 154, 656 (1936).
http://dx.doi.org/10.1098/rspa.1936.0075
49.
49.E. C. Stoner, Proc. Roy. Soc. Lond. A 165, 372 (1938).
http://dx.doi.org/10.1098/rspa.1938.0066
50.
50.J. Hubbard, Proc. Roy. Soc. Lond. A 276, 238 (1963).
http://dx.doi.org/10.1098/rspa.1963.0204
51.
51.M. Meinert, J. Phys.: Condens. Matter 28, 056006 (2016).
http://dx.doi.org/10.1088/0953-8984/28/5/056006
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4948984
Loading
/content/aip/journal/adva/6/5/10.1063/1.4948984
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4948984
2016-05-05
2016-12-11

Abstract

Based on comprehensive experimental and quantum-theoretical investigations, we identify SnFeN as a canonical spin glass and the first ternary iron nitride with a frustrated spin ground state. SnFeN is the end member of the solid solution SnFeN (0 < x ≤ 0.9) derived from ferromagnetic′-FeN. Within the solid solution, the gradual incorporation of tin is accompanied by a drastic weakening of the ferromagnetic interactions. To explore the dilution of the ferromagnetic coupling, the highly tin-substituted SnFeN has been magnetically reinvestigated. DC magnetometry reveals diverging susceptibilities for FC and ZFC measurements at low temperatures and an unsaturated hysteretic loop even at high magnetic fields. The temperature dependence of the real component of the ACsusceptibility at different frequencies proves the spin-glasstransition with the characteristic parameters   =  12.83(6) K, * = 10−11.8(2) s, = 5.6(1) and Δ/( ⋅ Δlg) = 0.015. The time-dependent response of the magnetic spins to the external field has been studied by extracting the distribution function of relaxation times(, ) up to from the complex plane of ACsusceptibilities. The weakening of the ferromagnetic coupling by substituting tin into ′-FeN is explained by the Stoner criterion on the basis of electronic structure calculations and a quantum-theoretical bonding analysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4948984.html;jsessionid=gXByNZGLiPhvgdn9dUgx54i3.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4948984&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4948984&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4948984'
Right1,Right2,Right3,