Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. J. Cava, R. B. Vandover, B. Batlogg, and E. A. Rietman, Phys. Rev. Lett. 58, 408-410 (1987).
2.R. Khasanov, A. Shengelaya, A. Maisuradze, F. La Mattina, A. Bussmann-Holder, H. Keller, and K. A. Muller, Phys. Rev. Lett. 98, 057007 (2007).
3.Y. Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 80, 1932-1935 (1998).
4.P. Mahadevan, K. Terakura, and D. D. Sarma, Phys. Rev. Lett. 87, 066404 (2001).
5.D. J. Huang, W. B. Wu, G. Y. Guo, H. J. Lin, T. Y. Hou, C. F. Chang, C. T. Chen, A. Fujimori, T. Kimura, H. B. Huang, A. Tanaka, and T. Jo, Phys. Rev. Lett. 92, 087202 (2004).
6.E. Dagotto, Science 309, 257-262 (2005).
7.H. D. Zhou, B. S. Conner, L. Balicas, and C. R. Wiebe, Phys. Rev. Lett. 99, 136403 (2007).
8.J. Sugiyama, H. Nozaki, I. Umegaki, W. Higemoto, E. J. Ansaldo, J. H. Brewer, H. Sakurai, T. H. Kao, H. D. Yang, and M. Mansson, Phys. Rev. B. 89, 020402 (2014).
9.G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 103, 067205 (2009).
10.M. V. Eremin, J. Deisenhofer, R. M. Eremina, J. Teyssier, D. van der Marel, and A. Loidl, Phys. Rev. B. 84, 212407 (2011).
11.H. Sakurai, J. Phys. Soc. Jpn. 83, 123701 (2014).
12.J. Sugiyama, H. Nozaki, I. Umegaki, W. Higemoto, E. J. Ansaldo, J. H. Brewer, H. Sakurai, T. H. Kao, H. D. Yang, and M. Mansson, in 13th International Conference on Muon Spin Rotation, Relaxation and Resonance (2014), Vol.551.
13.Y. Kitaoka, T. Kobayashi, A. Koda, H. Wakabayashi, Y. Niino, H. Yamakage, S. Taguchi, K. Amaya, K. Yamaura, M. Takano, Hirano A, and Kanno R, J. Phys. Soc. Jpn. 67, 3703-3706 (1998).
14.F. Reynaud, D. Mertz, F. Celestini, J. M. Debierre, A. M. Ghorayeb, P. Simon, A. Stepanov, J. Voiron, and C. Delmas, Phys. Rev. Lett. 86, 3638-3641 (2001).
15.S. Nakatsuji, K. Kuga, K. Kimura, R. Satake, N. Katayama, E. Nishibori, H. Sawa, R. Ishii, M. Hagiwara, F. Bridges, T. U. Ito, W. Higemoto, Y. Karaki, M. Halim, A. A. Nugroho, J. A. Rodriguez-Rivera, M. A. Green, and C. Broholm, Science 336, 559-563 (2012).
16.Y. Ishiguro, K. Kimura, S. Nakatsuji, S. Tsutsui, A. Q. R. Baron, T. Kimura, and Y. Wakabayashi, Nature Communications 4 (2013).
17.Z. L. Dun, V. O. Garlea, C. Yu, Y. Ren, E. S. Choi, H. M. Zhang, S. Dong, and H. D. Zhou, Phys. Rev. B. 89, 235131 (2014).
18.A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 86, 2004.
19.M. E. Leonowicz, K. R. Poeppelmeier, and J. M. Longo, J. Solid State Chem. 59, 71-80 (1985).
20.J. L. Tholence, Solid State Commun. 35, 113-117 (1980).
21.K. De, M. Patra, S. Majumdar, and S. Giri, Journal of Physics D-Applied Physics 40, 7614-7619 (2007).
22.V. Markovich, I. Fita, A. Wisniewski, G. Jung, D. Mogilyansky, R. Puzniak, L. Titelman, and G. Gorodetsky, Phys. Rev. B. 81, 134440 (2010).
23.A. M. Arevalo-Lopez, A. J. Dos Santos-Garcia, J. R. Levin, J. P. Attfield, and M. A. Alario-Franco, Inorg. Chem. 54, 832-836 (2015).
24.L. P. Cao, X. C. Wang, Q. Q. Liu, L. Q. Pan, C. Z. Gu, and C. Q. Jin, Acta Physica Sinica 64, 217502-217502 (2015).
25.J. Matsuno, Y. Okimoto, M. Kawasaki, and Y. Tokura, Phys. Rev. Lett. 95, 176404 (2005).
26.Y. W. Long, L. X. Yang, Y. X. Lv, Q. Q. Liu, C. Q. Jin, J. S. Zhou, and J. B. Goodenough, J. Phys.: Condens. Matter 23, 355601 (2011).
27.L. P. Cao, L. Q. Pan, W. M. Li, X. C. Wang, Q. Q. Liu, Y. W. Long, C. Z. Gu, and C. Q. Jin, Int. J. Mod Phys B 29 (2015).
28.L. Ortega-San-Martin, A. J. Williams, J. Rodgers, J. P. Attfield, G. Heymann, and H. Huppertz, Phys. Rev. Lett. 99, 255701 (2007).
29.K. W. Lee and W. E. Pickett, Phys. Rev. B. 80, 125133 (2009).
30.A. C. Komarek, S. V. Streltsov, M. Isobe, T. Moller, M. Hoelzel, A. Senyshyn, D. Trots, M. T. Fernandez-Diaz, T. Hansen, H. Gotou, T. Yagi, Y. Ueda, V. I. Anisimov, M. Gruninger, D. I. Khomskii, and M. Braden, Phys. Rev. Lett. 101, 167204 (2008).
31.A. C. Komarek, T. Moller, M. Isobe, Y. Drees, H. Ulbrich, M. Azuma, M. T. Fernandez-Diaz, A. Senyshyn, M. Hoelzel, G. Andre, Y. Ueda, M. Gruninger, and M. Braden, Phys. Rev. B. 84, 125114 (2011).
32.J. S. Zhou, C. Q. Jin, Y. W. Long, L. X. Yang, and J. B. Goodenough, Phys. Rev. Lett. 96, 046408 (2006).
33.L. X. Yang, Y. W. Long, C. Q. Jin, R. C. Yu, J. S. Zhou, J. B. Goodenough, H. Z. Liu, G. Y. Shen, and H. K. Mao, in Joint 21st Airapt and 45th Ehprg International Conference on High Pressure Science and Technology (2008), Vol.121, p. 022017.
34.J. S. Zhou, J. A. Alonso, J. Sanchez-Benitez, M. T. Fernandez-Diaz, R. Martinez-Coronado, L. P. Cao, X. Li, L. G. Marshall, C. Q. Jin, and J. B. Goodenough, Phys. Rev. B. 92, 144421 (2015).
35.H. M. Liu, C. Zhu, C. Y. Ma, S. Dong, and J. M. Liu, J. Appl. Phys. 110, 073701 (2011).

Data & Media loading...


Article metrics loading...



The bulk CaCrO samples were synthesized under high pressure and high temperature conditions using CaO and CrO as starting materials. The structure of the prepared CaCrO solid is characterized by X-ray diffraction with Rietveld refinement as tetragonal structure with the space group 4/. The CrO octahedrons elongate along c axis and rotate in ab plane. DC and ACmagnetic susceptibility measurement results indicate spin glass behavior at low temperature. Temperature dependence of resistivitymeasurement results show CaCrO is an insulator at both ambient condition and high pressure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd