Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4949564
1.
1.C. Y. Poon and B. Bhushan, J. Appl. Phys. 79, 5799 (1996).
http://dx.doi.org/10.1063/1.362193
2.
2.A. Jourani, M. Bigerelle, L. Petit, and H. Zahouani, Int. J. Mater. Prod. Technol. 38(1), 44 (2010).
http://dx.doi.org/10.1504/IJMPT.2010.031894
3.
3.A. Jourani, Int. J. of Mechatronics and Manufacturing Systems. 8(1-2), 19 (2015).
http://dx.doi.org/10.1504/IJMMS.2015.071664
4.
4.L. Petit, Bigerelle, A. Jourani, E. Dore, C. Prelle, and F. Lamarque, Proc. Inst. Mech. Eng. Part J. 224(9), 1019 (2010).
http://dx.doi.org/10.1243/13506501JET732
5.
5.E. R. M. Gelink and D. J. Schipper, ASME J. Tribol. 121(3), 449 (1999).
http://dx.doi.org/10.1115/1.2834088
6.
6.A. A. Polycarpou and I. Etsion, ASME J. Tribol. 121((2), 234 (1999).
http://dx.doi.org/10.1115/1.2833926
7.
7.Z. Liu, A. Neville, and R. L. Reuben, Tribol. Trans. 43(4), 627 (2000).
http://dx.doi.org/10.1080/10402000008982387
8.
8.A. Jourani, M. Dursapt, H. Hamdi, J. Rech, and H. Zahouani, Wear. 259(7-12), 1137 (2005).
http://dx.doi.org/10.1016/j.wear.2005.02.113
9.
9.A. Jourani, ASME J. Tribol. 137(1), 011401 (2014).
http://dx.doi.org/10.1115/1.4028286
10.
10.A. Majumdar and B. Bhushan, ASME J. Tribol. 112(2), 205 (1990).
http://dx.doi.org/10.1115/1.2920243
11.
11.A. Majumdar and C.L. Tien, Wear. 136(2), 313 (1990).
http://dx.doi.org/10.1016/0043-1648(90)90154-3
12.
12.L. Kogut and R.L. Jackson, ASME J. Tribol. 128(1), 213 (2005).
http://dx.doi.org/10.1115/1.2114949
13.
13.S. Mezghani, A. Jourani, and H. Zahouani, WIT Trans. Built. Environ. 85, 369 (2006).
14.
14.A. Jourani and S. Bouvier, Tribol.Trans. 58(1), 131 (2015).
http://dx.doi.org/10.1080/10402004.2014.955229
15.
15.G. Li, Y. Huang, Y. Lin, and X. Pan, Tribol. Trans. 56(2), 284 (2013).
http://dx.doi.org/10.1080/10402004.2012.750023
16.
16.B. Mandelbrot, The Fractal Geometry of Nature (W H Freeman, New York, 1982).
17.
17.Y. F. Peng and Y.B. Guo, J. Appl. Phys. 102, 053510 (2007).
http://dx.doi.org/10.1063/1.2777476
18.
18.C.C. Chou and H. H. Lin, J. Appl. Phys. 107, 073510 (2010).
http://dx.doi.org/10.1063/1.3359657
19.
19.J. F. Archard, Proc. R. Soc. London, Ser. A. 243, 190 (1957).
http://dx.doi.org/10.1098/rspa.1957.0214
20.
20.M. Ciavarella and G. Demelio, J. Appl. Mech. 68, 496 (2001).
http://dx.doi.org/10.1115/1.1352016
21.
21.M.V. Berry and Z.V. Lewis, Proc. R. Soc. London, Ser. A 370, 459 (1980).
http://dx.doi.org/10.1098/rspa.1980.0044
22.
22.K. Willner, Z. Math. Mech. 80, 7376 (2000).
http://dx.doi.org/10.1002/zamm.20000801319
23.
23.M. Ciavarella, G. Muroloa, G. Demelioa, and J.G. Barber, J. Mech. Phys. Solids. 52, 1247 (2004).
http://dx.doi.org/10.1016/j.jmps.2003.12.002
24.
24.W. Yan and K. Komvopoulos, J. Appl. Phys. 84, 3617 (1998).
http://dx.doi.org/10.1063/1.368536
25.
25.C.K. Bora, E.E. Flater, and M.D. Street, Tribol. Lett. 19, 37 (2005).
http://dx.doi.org/10.1007/s11249-005-4263-8
26.
26.S. Hyun, L. Pei, J.F. Molinari, and M. Robbins, Phy. Rev. E 70, 026117 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.026117
27.
27.J.H. Dieterich and B. Kilgore, Tectonophysics. 256, 219 (1996).
http://dx.doi.org/10.1016/0040-1951(95)00165-4
28.
28.L. Pei, S. Hyun, J.F. Molinari, and M. Robbins, J. Mech. Phys. Solids. 53, 2385 (2005).
http://dx.doi.org/10.1016/j.jmps.2005.06.008
29.
29.H. Hertz, J. Reine Angew. Math. 92, 156 (1881).
30.
30.D. Tabor, The Hardness of Metals (Oxford University, Oxford, UK, 1951).
31.
31.K. L. Johnson, Contact Mechanics (Cambridge University, Cambridge, UK, 1985).
32.
32.Y. Zhao, D. M. Maietta, and L. Chang, ASME J. Tribol. 122((1), 86 (2000).
http://dx.doi.org/10.1115/1.555332
33.
33.H. Francis, ASME J. Eng. Mater. Technol. 98(3), 272 (1976).
http://dx.doi.org/10.1115/1.3443378
34.
34.W. R. Chang, I. Etsion, and D.B. Bogy, ASME J. Tribol. 109(2), 257 (1987).
http://dx.doi.org/10.1115/1.3261348
35.
35.A. Jourani, Int. J. Surf. Sci. Eng. 9(2-3), 231 (2015).
http://dx.doi.org/10.1504/IJSURFSE.2015.068237
36.
36.Y. Zhao and L. Chang, ASME J. Tribol. 123(4), 857 (2001).
http://dx.doi.org/10.1115/1.1338482
37.
37.A. Jourani, B. Hagège, S. Bouvier, M. Bigerelle, and H. Zahouani, Tribol. Int. 59, 30 (2013).
http://dx.doi.org/10.1016/j.triboint.2012.07.001
38.
38.A. Jourani, Int. J. Mater. Prod. Tec. 51(2), 127 (2015).
http://dx.doi.org/10.1504/IJMPT.2015.071771
39.
39.C. Putignano, L. Afferrante, G. Carbone, and G. Demelio, J. Mech. Phys. Solids. 60(5), 973 (2012).
http://dx.doi.org/10.1016/j.jmps.2012.01.006
40.
40.B. N. J. Persson, Phys. Rev. Lett. 87, 116101 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.116101
41.
41.G. Carbone and F. Bottiglione, J. Mech. Phys. Solids. 56(8), 2555 (2008).
http://dx.doi.org/10.1016/j.jmps.2008.03.011
42.
42.J. A. Greenwood, Wear. 261, 191 (2006).
http://dx.doi.org/10.1016/j.wear.2005.09.031
43.
43.A. W. Bush, R. D. Gibson, and T. R. Thomas, Wear. 35, 87 (1975).
http://dx.doi.org/10.1016/0043-1648(75)90145-3
44.
44.M. Borri Brunetto, B. Chiaia, and M. Ciavarella, Comput. Method. Appl. M. 190(46-47), 6053 (2001).
http://dx.doi.org/10.1016/S0045-7825(01)00218-3
45.
45.C. Yang and B. N. J. Persson, J. Phys. Condens. Matter. 20, 215214 (2008).
http://dx.doi.org/10.1088/0953-8984/20/21/215214
46.
46.S. Hyun and M. O. Robbins, Tribol. Int. 40(10-12), 1413 (2007).
http://dx.doi.org/10.1016/j.triboint.2007.02.003
47.
47.M. Paggi and Q. C. He, Wear. 336-337, 86 (2015).
http://dx.doi.org/10.1016/j.wear.2015.04.021
48.
48.A. Jourani, A. Dellaleau, M. Dursapt, H. Hamdi, F. Sidoroff, and H. Zahouani, Rev. Eur. Elem. 14(2–3), 271 (2005).
49.
49.A. Jourani, Indian. J. Eng. Mater. S. 22(6), 611 (2015).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4949564
Loading
/content/aip/journal/adva/6/5/10.1063/1.4949564
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4949564
2016-05-10
2016-10-01

Abstract

Few models are devoted to investigate the effect of 3D fractal dimension Ds on contact area and asperity interactions. These models used statistical approaches or two-dimensional deterministic simulations without considering the asperity interactions and elastic–plastic transition regime. In this study, a complete 3D deterministic model is adopted to simulate the contact between fractalsurfaces which are generated using a modified two-variable Weierstrass–Mandelbrot function. This model incorporates the asperity interactions and considers the different deformation modes of surface asperities which range from entirely elastic through elastic-plastic to entirely plastic contact. The simulations reveal that the elastoplastic model is more appropriate to calculate the contact area ratio and pressure field. It is also shown that the influence of the asperity interactions cannot be neglected, especially at lower fractal dimension Ds and higher load.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4949564.html;jsessionid=yZpfztvq3dXBtuIuxb6SCqM_.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4949564&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4949564&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4949564'
Right1,Right2,Right3,