Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4949757
1.
1.F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
http://dx.doi.org/10.1103/PhysRevLett.3.34
2.
2.J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
http://dx.doi.org/10.1016/0022-4596(71)90091-0
3.
3.Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100347
4.
4.M. Soltani, M. Chaker, E. Haddad, R. Kruzelecky, and J. Margot, J. Vac. Sci. Technol. A 25, 971 (2007).
http://dx.doi.org/10.1116/1.2734150
5.
5.S. Bonora, U. Bortolozzo, S. Residori, R. Balu, and P. V. Ashrit, Opt. Lett. 35, 103 (2010).
http://dx.doi.org/10.1364/OL.35.000103
6.
6.Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, Nano Energy 1, 221 (2012).
http://dx.doi.org/10.1016/j.nanoen.2011.12.002
7.
7.R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, Adv. Funct. Mater. 21, 1602 (2011).
http://dx.doi.org/10.1002/adfm.201002436
8.
8.M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, Nature 487, 459 (2012).
http://dx.doi.org/10.1038/nature11296
9.
9.H. Takami, K. Kawatani, T. Kanki, and H. Tanaka, Jpn. J. Appl. Phys., Part 1 50, 055804 (2011).
http://dx.doi.org/10.7567/JJAP.50.055804
10.
10.S. Sedky, P. Fiorini, M. Caymax, A. Verbist, and C. Baert, Sens. Actuators A 66, 193 (2003).
http://dx.doi.org/10.1016/S0924-4247(98)00007-7
11.
11.S. Eminoglu, D. S. Tezcan, M. Y. Tanrikulu, and T. Akin, Sens. Actuators A 109, 102 (2003).
http://dx.doi.org/10.1016/j.sna.2003.08.013
12.
12.M. Moreno, A. Kosarev, A. Torres, and R. Ambrosio, Thin Solid Films 515, 7607 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.11.172
13.
13.M. Nishikawa, T. Nakajima, T. Kumagai, T. Okutani, and T. Tsuchiya, J. Ceram. Soc. Jpn. 119, 577 (2011).
http://dx.doi.org/10.2109/jcersj2.119.577
14.
14.I. Takahashi, M. Hibino, and T. Kudo, Jpn. J. Appl. Phys., Part 1 40, 1391 (2004).
http://dx.doi.org/10.1143/JJAP.40.1391
15.
15.K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, Jpn. J. App. Phys., Part 1 53, 071102 (2014).
http://dx.doi.org/10.7567/JJAP.53.071102
16.
16.M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, Appl. Phys. Lett. 85, 1958 (2004).
http://dx.doi.org/10.1063/1.1788883
17.
17.K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, and A. Sawa, J. Appl. Phys. 118, 055301 (2015).
http://dx.doi.org/10.1063/1.4927746
18.
18.J. P. Pouget and H. Launois, J. Phys. Colloq. 37, C4-49 (1976).
http://dx.doi.org/10.1051/jphyscol:1976408
19.
19.G. Villeneuve, A. Bordet, A. Casalot, J. P. Pouget, H. Launois, and P. Lederer, J. Phys. Chem. Solids 33, 1953 (1972).
http://dx.doi.org/10.1016/S0022-3697(72)80494-3
20.
20.M. Pan, H. M. Zhong, S. W. Wang, J. Liu, Z. F. Li, X. S. Chen, and W. Lu, J. Cryst. Growth 265, 121 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2003.12.065
21.
21.A. Sharoni, J. G. Ramírez, and I. K. Schuller, Phys. Rev. Lett. 101, 026404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026404
22.
22.H. Takami, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 104, 023104 (2014).
http://dx.doi.org/10.1063/1.4861720
23.
23.J. B. Goodenough and H. Y.- P. Hong, Phys. Rev. B 8, 1323 (1973).
http://dx.doi.org/10.1103/PhysRevB.8.1323
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4949757
Loading
/content/aip/journal/adva/6/5/10.1063/1.4949757
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4949757
2016-05-10
2016-09-30

Abstract

We investigated the effects of chromium (Cr) and niobium(Nb) co-doping on the temperature coefficient of resistance (TCR) and the thermal hysteresis of the metal–insulator transition of vanadium dioxide (VO) films. We determined the TCR and thermal-hysteresis-width diagram of the VCrNbOfilms by electrical-transport measurements and we found that the doping conditions and + ≥ 0.1 are appropriate for simultaneously realizing a large TCR value and an absence of thermal hysteresis in the films. By using these findings, we developed a VCrNbOfilmgrown on a TiO-buffered SiO/Si substrate that showed practically no thermal hysteresis while retaining a large TCR of 11.9%/K. This study has potential applications in the development of VO-based uncooled bolometers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4949757.html;jsessionid=GuzguRb_OLJbNmFN9x59cqEj.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4949757&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4949757&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4949757'
Right1,Right2,Right3,