Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4950702
1.
1.J. Hasty, D. McMillen, F. Isaacs, and J. J. Collins, Nat. Rev. Genet. 2, 268 (2001).
http://dx.doi.org/10.1038/35066056
2.
2.T. B. Kepler and T. C. Elston, Biophys. J. 81, 3116 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)75949-8
3.
3.A. M. Walczak, J. N. Onuchic, and P. G. Wolynes, Proc. Natl. Acad. Sci. USA 102, 18926 (2005).
http://dx.doi.org/10.1073/pnas.0509547102
4.
4.M. Sasai and P. G. Wolynes, Proc. Natl. Acad. Sci. USA 100, 2374 (2003).
http://dx.doi.org/10.1073/pnas.2627987100
5.
5.H. Ge and H. Qian, Phys. Rev. Lett. 103, 148103 (2009);
http://dx.doi.org/10.1103/PhysRevLett.103.148103
5.H. Ge and H. Qian, Chaos 22, 023140 (2012);
http://dx.doi.org/10.1063/1.4729137
5.H. Ge and H. Qian, J. R. Soc. Interface 8, 107 (2011).
http://dx.doi.org/10.1098/rsif.2010.0202
6.
6.A. Lipshtat, A. Loinger, N. Q. Balaban, and O. Biham, Phys. Rev. Lett. 96, 188101 (2006);
http://dx.doi.org/10.1103/PhysRevLett.96.188101
6.A. Loinger and O. Biham, Phys. Rev. Lett. 103, 068104 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.068104
7.
7.W. Wu and J. Wang, J. Chem. Phys. 139, 121920 (2013);
http://dx.doi.org/10.1063/1.4816376
7.W. Wu and J. Wang, J. Phys. Chem. B 117, 12908 (2013).
http://dx.doi.org/10.1021/jp402064y
8.
8.M. J. Morelli, R. J. Allen, S. Tănase-Nicola, and P. R. ten Wolde, J. Chem. Phys. 128, 045105 (2008).
http://dx.doi.org/10.1063/1.2821957
9.
9.H. H. McAdams and A. Arkin, Proc. Natl. Acad. Sci. USA 94, 814 (1997).
http://dx.doi.org/10.1073/pnas.94.3.814
10.
10.D. Angeli, J. E. Ferrel, Jr., and E. D. Sontag, Proc. Natl. Acad. Sci. USA 101, 1822 (2004).
http://dx.doi.org/10.1073/pnas.0308265100
11.
11.A. D. Keller, J. Theor. Biol. 170, 175 (1994).
http://dx.doi.org/10.1006/jtbi.1994.1177
12.
12.E. H. Snoussi, J. Biol. Syst. 6, 3 (1998).
http://dx.doi.org/10.1142/S0218339098000042
13.
13.E. Plahte, T. Mestl, and S. W. Omholt, J. Biol. Syst. 3, 409 (1995).
http://dx.doi.org/10.1142/S0218339095000381
14.
14.J.-L. Gouzé, J. Biol. Syst. 6, 11 (1998).
http://dx.doi.org/10.1142/S0218339098000054
15.
15.O. Cinquin and J. Demongeot, J. Theor. Biol. 216, 229 (2002).
http://dx.doi.org/10.1006/jtbi.2002.2544
16.
16.J. Hasty, J. Pradines, M. Dolnik, and J. J. Collins, Proc. Natl. Acad. Sci. USA 97, 2075 (2000).
http://dx.doi.org/10.1073/pnas.040411297
17.
17.M. Laurent and N. Kellershohn, Trends Bioch. Sci. 24, 418 (1999).
http://dx.doi.org/10.1016/S0968-0004(99)01473-5
18.
18.F. Wolf, Phys. Rev. Lett. 95, 208701 (2005);
http://dx.doi.org/10.1103/PhysRevLett.95.208701
18.Erratum, F. Wolf, Phys. Rev. Lett. 103, 209902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.209902
19.
19.E. L. Haseltine and J. B. Rawlings, J. Chem. Phys. 117, 6959 (2002).
http://dx.doi.org/10.1063/1.1505860
20.
20.T. Shibata, J. Chem. Phys. 119, 6629 (2003).
http://dx.doi.org/10.1063/1.1603738
21.
21.R. Bundschuh, F. Hayot, and C. Jayaprakash, Biophys. J. 84, 1606 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74970-4
22.
22.C. V. Rao and A. P. Arkin, J. Chem. Phys. 118, 4999 (2003).
http://dx.doi.org/10.1063/1.1545446
23.
23.J. Puchałka and A. M. Kierzek, Biophys. J. 86, 1357 (2004).
http://dx.doi.org/10.1016/S0006-3495(04)74207-1
24.
24.Y. Cao, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 122, 014116 (2005).
http://dx.doi.org/10.1063/1.1824902
25.
25.H. Salis and Y. N. Kaznessis, J. Chem. Phys. 123, 214106 (2005).
http://dx.doi.org/10.1063/1.2131050
26.
26. W E, D. Liu, and E. Vanden-Eijnden, J. Chem. Phys. 123, 194107 (2005).
http://dx.doi.org/10.1063/1.2109987
27.
27.T. R. Kiehl, R. M. Mattheyses, and M. K. Simmons, Bioinformatics 20, 316 (2004).
http://dx.doi.org/10.1093/bioinformatics/btg409
28.
28.K. Takahashi, K. Kaizu, B. Hu, and M. Tomita, Bioinformatics 20, 538 (2004).
http://dx.doi.org/10.1093/bioinformatics/btg442
29.
29.D. T. Gillespie, J. Chem. Phys. 115, 1716 (2001).
http://dx.doi.org/10.1063/1.1378322
30.
30.H. Salis and Y. N. Kaznessis, J. Chem. Phys. 123, 214106 (2005).
http://dx.doi.org/10.1063/1.2131050
31.
31.Y. N. Kaznessis, Chem. Eng. Sci. 61, 940 (2006).
http://dx.doi.org/10.1016/j.ces.2005.06.033
32.
32.H. de Jong, J. Comput. Biol. 9, 67 (2002).
http://dx.doi.org/10.1089/10665270252833208
33.
33.P. Smolen, D. A. Baxter, and J. H. Byrne, Bull. Math. Biol. 62, 247 (2000).
http://dx.doi.org/10.1006/bulm.1999.0155
34.
34.N. Radde, Bioinformatics 26, 2874 (2010).
http://dx.doi.org/10.1093/bioinformatics/btq517
35.
35.S. H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Perseus Book Publishing, Cambridge, MA, 1994).
36.
36.J. S. Griffith, Mathematical Neurobiology (Academic Press, New York, 1971).
37.
37.J. S. Griffith, J. Theor. Biol. 20, 209 (1968).
http://dx.doi.org/10.1016/0022-5193(68)90190-2
38.
38.H. C. M. Nelson and R. T. Sauer, Cell 42, 549 (1985).
http://dx.doi.org/10.1016/0092-8674(85)90112-6
39.
39.D. S. Spinner, S. Liu, S.-W. Wang, and J. Schmidt, J. Mol. Biol. 317, 431 (2002).
http://dx.doi.org/10.1006/jmbi.2002.5440
40.
40.E. A. Nalefski, E. Nebelitsky, J. A. Lloyd, and S. R. Gullans, Biochemistry 45, 13794 (2006).
http://dx.doi.org/10.1021/bi0602011
41.
41.A. Michelman-Ribeiro, D. Mazza, T. Rosales, T. J. Stasevich, H. Boukari, V. Rishi, C. Vinson, J. R. Knutson, and J. G. McNally, Biophys. J. 97, 337 (2009);
http://dx.doi.org/10.1016/j.bpj.2009.04.027
41.J. G. McNally, W.G. Müller, D. Walker, R. Wolford, and G. L. Hager, Science 287, 1262 (2000);
http://dx.doi.org/10.1126/science.287.5456.1262
41.B. L. Sprague, F. Müller, R.L. Pego, P.M. Bungay, D.A. Stavreva, and J. G. McNally, Biophys. J. 91, 1169 (2006).
http://dx.doi.org/10.1529/biophysj.105.073676
42.
42.M. Geertz, D. Shore, and S. J. Maerkl, Proc. Natl. Acad. Sci. USA 109, 16540 (2012).
http://dx.doi.org/10.1073/pnas.1206011109
43.
43.B. Muller-hill, The Lac Operon: A Short History Of A Genetic Paradigm, Publisher (Walter de Gruyter, Berlin, New York, 1996).
44.
44.D. R. Larson, D. Zenklusen, B. Wu, J.A. Chao, and R. H. Singer, Science 332, 475 (2011).
http://dx.doi.org/10.1126/science.1202142
45.
45.K. Boström, M. Wettesten, J. Borén, G. Bondjers, O. Wiklund, and S. O. Olofsson, J. Biol. Chem. 261, 13800 (1986).
46.
46.M. Siwiak and P. Zielenkiewicz, PloS ONE. 8, e73943 (2013).
http://dx.doi.org/10.1371/journal.pone.0073943
47.
47.C. C. Guet, L. Bruneaux, T. L. Min, D. Siegal-Gaskins, I. Figueroa, T. Emonet, and P. Cluzel, Nucleic Acids Res. 36, e73 (2008).
http://dx.doi.org/10.1093/nar/gkn329
48.
48.S. Proshkin, R. Rahmouni, A. Mironov, and E. Nudler, Science 328, 504 (2010).
http://dx.doi.org/10.1126/science.1184939
49.
49.S. H. Northrup and H. P. Erickson, Proc. Natl. Acad. Sci. USA 89, 3338 (1992).
http://dx.doi.org/10.1073/pnas.89.8.3338
50.
50.D. Y. Vargas, A. Raj, S. A. E. Marras, F. R. Kramer, and S. Tyagi, Proc. Natl. Acad. Sci. USA 102, 17008 (2005).
http://dx.doi.org/10.1073/pnas.0505580102
51.
51.G.-W. Li and X. S. Xie, Nature 475, 308 (2011).
http://dx.doi.org/10.1038/nature10315
52.
52.J. T. Mika, P. E. Schavemaker, V. Krasnikov, and B. Poolman, Mol. Microbiol. 94, 857 (2014).
http://dx.doi.org/10.1111/mmi.12800
53.
53.J. M. Halstead, T. Lionnet, J. H. Wilbertz, F. Wippich, A. Ephrussi, R. H. Singer, and J. A. Chao, Science 347, 1367 (2015).
http://dx.doi.org/10.1126/science.aaa3380
54.
54.M. Oeffinger and D. Zenklusen, Biochim. Biophys. Acta 1819, 494 (2012).
http://dx.doi.org/10.1016/j.bbagrm.2012.02.011
55.
55.C. Molenaar, A. Abdulle, A. Gena, H. J. Tanke, and R. W. Dirks, J. Cell Biol. 165, 191 (2004).
http://dx.doi.org/10.1083/jcb.200310139
56.
56.T. Misteli, Histochem. Cell. Biol. 129, 5 (2008).
http://dx.doi.org/10.1007/s00418-007-0355-x
57.
57.N. S. Wingreen and K. C. Huang, Annu. Rev. Microbiol. 69, 361 (2015).
http://dx.doi.org/10.1146/annurev-micro-091014-104313
58.
58.D. Grünwald and R. H. Singer, Nature 467, 604 (2010).
http://dx.doi.org/10.1038/nature09438
59.
59.J. E. Pérez-Ortín, P. M. Alepuz, and J. Moreno, Trends Genet. 23, 250 (2007).
http://dx.doi.org/10.1016/j.tig.2007.03.006
60.
60.S. O. Rogers, Integrated Molecular Evolution (CRC Press, Florida, 2011).
61.
61.E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, Nature 438, 460 (2005).
http://dx.doi.org/10.1038/nature04268
62.
62.M. D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M. Block, Science 282, 902 (1998).
http://dx.doi.org/10.1126/science.282.5390.902
63.
63.J. Yao, M. B. Ardehali, C. J. Fecko, W. W. Webb, and J. T. Lis, Mol. Cell. 28, 978 (2007).
http://dx.doi.org/10.1016/j.molcel.2007.10.017
64.
64.K. B. Halpern, S. Tanami, S. Landen, M. Chapal, L. Szlak, A. Hutzler, A. Nizhberg, and S. Itzkovitz, Mol. Cell. 58, 147 (2015).
http://dx.doi.org/10.1016/j.molcel.2015.01.027
65.
65.G. Fuchs, Y. Voichek, S. Benjamin, S. Gilad, I. Amit, and M. Oren, Genome Biol. 15, R69 (2014).
http://dx.doi.org/10.1186/gb-2014-15-5-r69
66.
66.I. Jonkers, H. Kwak, and J. T. Lis, eLife 3, e02407 (2014).
http://dx.doi.org/10.7554/eLife.02407
67.
67.A. Veloso, K. S. Kirkconnell, B. Magnuson, B. Biewen, M. T. Paulsen, T. E. Wilson, and M. Ljungman, Genome Res. 24, 896 (2014).
http://dx.doi.org/10.1101/gr.171405.113
68.
68.X. Darzacq, Y. Shav-Tal, V. de Turris, Y. Brody, S. M. Shenoy, R. D. Phair, and R. H. Singer, Nat. Struct. Mol. Biol. 14, 796 (2007).
http://dx.doi.org/10.1038/nsmb1280
69.
69.A. N. Tihonov, Mat. Sb. N.S. 31, 575 (1952).
70.
70.W. Klonowski, Biophys. Chem. 18, 73 (1983).
http://dx.doi.org/10.1016/0301-4622(83)85001-7
71.
71.G. V. Milovanović, D. S. Mitrinović, and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros (World Scientific, Singapore, 1994).
72.
72.K. L. Davis and M. R. Roussel, FEBS J. 273, 84 (2006).
http://dx.doi.org/10.1111/j.1742-4658.2005.05043.x
73.
73.A. L. Beyer and Y. N. Osheim, Genes Dev. 2, 754 (1988).
http://dx.doi.org/10.1101/gad.2.6.754
74.
74.A. Audibert, D. Weil, and F. Dautry, Mol. Cell. Biol. 22, 6706 (2002).
http://dx.doi.org/10.1128/MCB.22.19.6706-6718.2002
75.
75.J. Singh and R. A. Padgett, Nat. Struct. Mol. Biol. 16, 1128 (2009).
http://dx.doi.org/10.1038/nsmb.1666
76.
76.Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics (Academic Press, 1993).
77.
77.H. Akkocaolua, H. Merdana, and C. Çelik, J. Comput. Appl. Math. 237, 565 (2013).
http://dx.doi.org/10.1016/j.cam.2012.06.029
78.
78.Y. Song and J. Wei, J. Math Anal. Appl. 301, 1 (2005).
http://dx.doi.org/10.1016/j.jmaa.2004.06.056
79.
79.L. Olien and J. Bélair, Physica D 102, 349 (1997).
http://dx.doi.org/10.1016/S0167-2789(96)00215-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4950702
Loading
/content/aip/journal/adva/6/5/10.1063/1.4950702
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4950702
2016-05-11
2016-12-06

Abstract

A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4950702.html;jsessionid=DxNWR_kwEtVxjTHTdZuKRV0W.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4950702&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4950702&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4950702'
Right1,Right2,Right3,