Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4950771
1.
1.J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177406
2.
2.S. Mathis, A. Romanov, L. Chen, G. Beltz, W. Pompe, and J. Speck, J. Cryst. Growth 231, 371 (2001).
http://dx.doi.org/10.1016/S0022-0248(01)01468-3
3.
3.O. Ambacher, R. Dimitrov, M. Stutzmann, B. E. Foutz, M. J. Murphy, J. A. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Chumbes, B. Green, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, Phys. Status Solidi B 216, 381 (1999).
http://dx.doi.org/10.1002/(SICI)1521-3951(199911)216:1<381::AID-PSSB381>3.0.CO;2-O
4.
4.L. C. Le, D. G. Zhao, D. S. Jiang, L. Li, L. L. Wu, P. Chen, Z. S. Liu, Z. C. Li, Y. M. Fan, J. J. Zhu, H. Wang, S. M. Zhang, and H. Yang, Appl. Phys. Lett. 101, 252110 (2012).
http://dx.doi.org/10.1063/1.4772548
5.
5.J. Kim, J. Kim, Y. Tak, S. Chae, J.-Y. Kim, and Y. Park, IEEE Electron Device Lett. 34, 1409 (2013).
http://dx.doi.org/10.1109/LED.2013.2280017
6.
6.S. Lester, F. Ponce, M. Craford, and D. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995).
http://dx.doi.org/10.1063/1.113252
7.
7.S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).
http://dx.doi.org/10.1063/1.116981
8.
8.A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010).
http://dx.doi.org/10.1063/1.3330870
9.
9.D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, Phys. Rev. B 83, 115321 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115321
10.
10.Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, Appl. Phys. Lett. 101, 083505 (2012).
http://dx.doi.org/10.1063/1.4747532
11.
11.T.-J. Yang, R. Shivaraman, J. S. Speck, and Y.-R. Wu, J. Appl. Phys. 116, 113104 (2014).
http://dx.doi.org/10.1063/1.4896103
12.
12.M. Shiojiri, C. Chuo, J. Hsu, J. Yang, and H. Saijo, J. Appl. Phys. 99, 073505 (2006).
http://dx.doi.org/10.1063/1.2180532
13.
13.H.-L. Tsai, T.-Y. Wang, J.-R. Yang, C.-C. Chuo, J.-T. Hsu, Z.-C. Feng, and M. Shiojiri, Mater. Trans. 48, 894 (2007).
http://dx.doi.org/10.2320/matertrans.48.894
14.
14.N. Okada, H. Kashihara, K. Sugimoto, Y. Yamada, and K. Tadatomo, J. Appl. Phys. 117, 025708 (2015).
http://dx.doi.org/10.1063/1.4905914
15.
15.A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, Phys. Rev. Lett. 95, 127402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.127402
16.
16.S.-H. Han, D.-Y. Lee, H.-W. Shim, J. W. Lee, D.-J. Kim, S. Yoon, Y. S. Kim, and S.-T. Kim, Appl. Phys. Lett. 102, 251123 (2013).
http://dx.doi.org/10.1063/1.4812810
17.
17.J. Kim, Y.-H. Cho, D.-S. Ko, X.-S. Li, J.-Y. Won, E. Lee, S.-H. Park, J.-Y. Kim, and S. Kim, Opt. Express 22, A857 (2014).
http://dx.doi.org/10.1364/OE.22.00A857
18.
18.Z. Quan, J. Liu, F. Fang, G. Wang, and F. Jiang, J. Appl. Phys. 118, 193102 (2015).
http://dx.doi.org/10.1063/1.4935945
19.
19.Z. Quan, L. Wang, C. Zheng, J. Liu, and F. Jiang, J. Appl. Phys. 116, 183107 (2014).
http://dx.doi.org/10.1063/1.4901828
20.
20.X. Wu, J. Liu, and F. Jiang, J. Appl. Phys. 118, 164504 (2015).
http://dx.doi.org/10.1063/1.4934503
21.
21.C.-Y. Chang, H. Li, Y.-T. Shih, and T.-C. Lu, Appl. Phys. Lett. 106, 091104 (2015).
http://dx.doi.org/10.1063/1.4914116
22.
22.S. Tomiya, Y. Kanitani, S. Tanaka, T. Ohkubo, and K. Hono, Appl. Phys. Lett. 98, 181904 (2011).
http://dx.doi.org/10.1063/1.3585118
23.
23.C.-K. Li, H.-C. Yang, T.-C. Hsu, Y.-J. Shen, A.-S. Liu, and Y.-R. Wu, J. Appl. Phys. 113, 183104 (2013).
http://dx.doi.org/10.1063/1.4804415
24.
24.C.-C Hsu, C.-K. Wu, C.-K. Li, T.-C. Lu, and Y.-R. Wu, in 15th NUSOD (2015).
25.
25.A. Romanov, T. Baker, S. Nakamura, and J. Speck, J. Appl. Phys. 100 (2006).
http://dx.doi.org/10.1063/1.2218385
26.
26.E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011).
http://dx.doi.org/10.1063/1.3570656
27.
27.J. Piprek, Phys. Stat. Sol. (A) 207, 2217 (2010).
http://dx.doi.org/10.1002/pssa.201026149
28.
28.C.-K. Wu, C.-K. Li, and Y.-R. Wu, J. Comput. Electron. 14, 416 (2015).
http://dx.doi.org/10.1007/s10825-015-0688-y
29.
29.C. Geuzaine and J. F. Remacle, Int. J. Numer. Meth. Eng. 79, 1309 (2009).
http://dx.doi.org/10.1002/nme.2579
30.
30.X. Wu, J. Liu, Z. Quan, C. Xiong, C. Zheng, J. Zhang, Q. Mao, and F. Jiang, Appl. Phys. Lett. 104, 221101 (2014).
http://dx.doi.org/10.1063/1.4880731
31.
31.O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002).
http://dx.doi.org/10.1088/0953-8984/14/13/302
32.
32.C. Youtsey, L. Romano, R. Molnar, and I. Adesida, Appl. Phys. Lett. 74, 3537 (1999).
http://dx.doi.org/10.1063/1.124153
33.
33.D.-S. Shin, D.-P. Han, J.-Y. Oh, and J.-I. Shim, Appl. Phys. Lett. 100, 153506 (2012).
http://dx.doi.org/10.1063/1.3703313
34.
34.H.-Y. Ryu, H.-S. Kim, and J.-I. Shim, Appl. Phys. Lett. 95, 081114 (2009).
http://dx.doi.org/10.1063/1.3216578
35.
35.C.-K. Li and Y.-R. Wu, IEEE Trans. Electron Devices 59, 400 (2012).
http://dx.doi.org/10.1109/TED.2011.2176132
36.
36.C.-K. Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, IEEE Trans. Electron Devices 61, 511 (2014).
http://dx.doi.org/10.1109/TED.2013.2294534
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4950771
Loading
/content/aip/journal/adva/6/5/10.1063/1.4950771
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4950771
2016-05-11
2016-09-26

Abstract

In this paper, influence of a V-pit embedded inside the multiple quantum wells(MQWs)LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pit sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4950771.html;jsessionid=mXuC8AHGM4Vx55mcRqhOxfql.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4950771&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4950771&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4950771'
Right1,Right2,Right3,