Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4950798
1.
1.A. Sanchez, C. Navau, N. Del-Valle, D. X. Chen, and J. R. Clem, Appl. Phys. Lett. 96, 072510 (2010).
http://dx.doi.org/10.1063/1.3315893
2.
2.D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett. 61, 219 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.219
3.
3.J. B. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968).
4.
4.A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials (Clarendon, Oxford, 1995).
5.
5.H. Hilgenkamp and J. Mannhart, Rev. Mod. Phys. 74, 485549 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.485
6.
6.D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett. 61, 219222 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.219
7.
7.P. Chaudhari, D. Dimos, and J. Mannhart, “Critical Currents in Single-Crystal and Bicrystal Films,” in Earlier and Recent Aspects of Superconductivity, edited by J. G. Bednorz and K. A. Muller (Springer-Verlag, 1990), pp. 201207.
8.
8.A. Gurevich and E. A. Pashitskii, Phys. Rev. B. 57, 13878 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.13878
9.
9.S. Graser, P. J. Hirschfeld, T. Kopp, R. Gutser, B. M. Andersen, and J. Mannhart, Nature Phys. 6, 8 (2010).
http://dx.doi.org/10.1038/nphys1687
10.
10.M. W. Coffey, Phys. Rev. B 49, 9774 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.9774
11.
11.P. Miranovi, L. Dobrosavljevi-Gruji, and V. Kogan, Phys. Rev. B 52, 12852 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.12852
12.
12.P. Lipavsky, K. Morawetz, J. Kolacek, and E. H. Brandt, Phys. Rev. B 78, 174516 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.174516
13.
13.H. Yong, F. Xue, and Y. Zhou, J. Appl. Phys. 110, 033905 (2011).
http://dx.doi.org/10.1063/1.3610508
14.
14.H. Yong and Y. Zhou, J. Appl. Phys. 111, 053929 (2012).
http://dx.doi.org/10.1063/1.3693576
15.
15.D. C. van der Lann, T. J. Haugan, P. N. Barnes, D. Abraimov, F. Kametani, D. C. Larbalestier, and M. W. Rupich, Supercond. Sci. Technol. 23, 014004 (2010).
http://dx.doi.org/10.1088/0953-2048/23/1/014004
16.
16.C. van der Lann and J. W. Ekin, Appl. Phys. Lett. 90, 052506 (2007).
http://dx.doi.org/10.1063/1.2435612
17.
17.D. Yue, X. Zhang, J. Zhou, and Y. Zhou, Appl. Phys. Lett. 103, 23 (2013).
http://dx.doi.org/10.1063/1.4838697
18.
18.M. Carmody, L. D. Marks, and K. L. Merkle, Physica C 370, 228238 (2002).
http://dx.doi.org/10.1016/S0921-4534(01)00946-7
19.
19.F. A. Wolf, S. Graser, and F. Loder, Rev. Lett. 108, 11 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.117002
20.
20.R. F. Klie, J. P. Buban, M. Varela, A. Franceschetti, C. Jooss, Y. Zhu, N. D. Browning, S. T. Pabtelides, and J. Pennycook, Nature Letters 435, 26 (2005).
http://dx.doi.org/10.1038/nature03644
21.
21.D. Dew-Hughes, Low Tem. Phys. 27, 967979 (2001).
http://dx.doi.org/10.1063/1.1421464
22.
22.P. Lipavsky, K. Morawetz, J. Kolacek, and E. H. Brandt, Phys. Rev. B 78, 174516 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.174516
23.
23.M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004).
24.
24.B. Oh, M. Naito, S. Arnason, P. Rosenthal, R. Barton, M. Beasley, T. Geballe, R. Hammond, and A. Kapitulnik, Appl. Phys. Lett. 51, 852 (1987).
http://dx.doi.org/10.1063/1.98834
25.
25.S. Jin, T. Tiefel, R. Sherwood, R. Van Dover, M. Davis, G. Kammlott, and R. Fastnacht, Phys. Rev. B 37, 7850 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.7850
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4950798
Loading
/content/aip/journal/adva/6/5/10.1063/1.4950798
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4950798
2016-05-12
2016-09-30

Abstract

In this paper, the effect of a grain boundary (GB) on the depairing current density of a high-temperaturesuperconducting film is investigated. The modified effective free energy is proposed by considering the interaction of the superconducting condensate with the deformation of the superconductor due to the dislocations which constitute a grain boundary. After the elastic strain field of the dislocation is obtained, we analyzed the depress effect of the GB on the depairing current density of a superconducting film. The results are qualitatively agreement with the classic exponential relationship with the misorientation angles of the critical current density of high-temperature superconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4950798.html;jsessionid=kU7yPSOo8XQbS2OHf46K-LbS.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4950798&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4950798&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4950798'
Right1,Right2,Right3,