Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4950856
1.
1.A. T. Nielsen, A. P. Chafin, D. W. Moore, M. P. Nadler, R. A. Nissan, and D. J. Vanderah, Tetrahedron 54, 11793 (1998).
http://dx.doi.org/10.1016/S0040-4020(98)83040-8
2.
2.M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, and H. Singh, J. Therm. Anal. Calorim. 73, 913 (2003).
http://dx.doi.org/10.1023/A:1025859203860
3.
3.Samson S. Samudre, Ushadevi R. Nair, Girish M. Gore, Rabindra Kumar Sinha, Arun Kanti Sikder, and Shri Nandan Asthana, Propellants, Explos., Pyrotech. 34, 145 (2009).
http://dx.doi.org/10.1002/prep.200800036
4.
4.R. Sivabalan, G. M. Gore, U. R. Nair, A. Saikia, S. Venugopalan, and B. R. Gandhe, Journal of Hazardous Materials 139, 199 (2007).
http://dx.doi.org/10.1016/j.jhazmat.2006.06.027
5.
5.T. P. Russell, P. J. Miller, G. J. Piemarini, and S. Block, J. Phys. Chem. 13, 5509 (1992).
http://dx.doi.org/10.1021/j100192a060
6.
6.Qi-Long Yan, Svatopluk Zeman, Ahmed Elbeih, Zhen-Wei Song, and Jiří Málek, J. Therm. Anal. Calorim. 112, 823 (2013).
http://dx.doi.org/10.1007/s10973-012-2711-x
7.
7.Jennifer A. Ciezak, Timothy A. Jenkins, and Zhenxian Liu, Propellants, Explos., Pyrotech. 32, 472 (2007).
http://dx.doi.org/10.1002/prep.200700209
8.
8.Jessica H. Urbelis and Jennifer A. Swift, Crystal Growth & Design 14, 5244 (2014).
http://dx.doi.org/10.1021/cg501030g
9.
9.U. R. Nair, R. Sivabalan, G. M. Gore, M. Geetha, S. N. Asthana, and H. Singh, Combustion Explosion & Shock Waves 41, 121 (2005).
http://dx.doi.org/10.1007/s10573-005-0014-2
10.
10.Ahmed ELBEIH, Adela HUSAROVA, and Svatopluk, Central European Journal of Energetic Materials 8, 173 (2011).
11.
11.C Jared, Chad A. Stoltz, and Suhithi M. Peiris, ABS Shock Compression of Condensed Matter Meeting 955, 127 (2007).
12.
12.YADOLLAH BAYAT and VIDA ZEYNALI, Journal of Energetic Materials 28, 273 (2010).
http://dx.doi.org/10.1080/07370651003749196
13.
13.O. Ordzhonikidze, A. Pivkina, Yu. Frolov, N. Muravyev, and K. Monogarov, J. Therm. Anal. Calorim. 105, 529 (2011).
http://dx.doi.org/10.1007/s10973-011-1562-1
14.
14.J. S. Gharia, R. K. Sinha, V. V. Tadas, Vinay Prakash, and V. K. Phadke, Denfence Science Journal 48, 125 (1998).
http://dx.doi.org/10.14429/dsj.48.3877
15.
15.Darla Graff Thompson, Bart Olinger, and Racci DeLuca, Propellants, Explos., Pyrotech. 30, 391 (2005).
http://dx.doi.org/10.1002/prep.200500030
16.
16.P. D. PETERSON, M. A. FLETCHER, and E. L. ROEMER, Journal of Energetic Materials 21, 247 (2003).
http://dx.doi.org/10.1080/713770436
17.
17.R. L. Simpson, P. A. Urtiev, D. L. Ornellas, G. L. Moody, K. J. Scribner, and D. F. Hoffman, Propellants, Explos., Pyrotech. 22, 249 (1997).
http://dx.doi.org/10.1002/prep.19970220502
18.
18.Qian Hua, Ye Zhi-Wen, and Lv Chun-Xu, Letters in Organic Chemistry 4, 482 (2007).
http://dx.doi.org/10.2174/157017807782006353
19.
19.Jared C. Gump and Suhithi M. Peiris, J. Appl. Phys. 104, 083509 (2008).
http://dx.doi.org/10.1063/1.2990066
20.
20.R Turcotte, M Vachon, Q S M Kwok, R Wang, and DEG Jones, Thermochimica Acta. 433, 105 (2005).
http://dx.doi.org/10.1016/j.tca.2005.02.021
21.
21.P. Zhang, J. J. Xu, and X. Y Guo, J. Therm. Anal. Calorim 117, 1001 (2014).
http://dx.doi.org/10.1007/s10973-014-3798-z
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4950856
Loading
/content/aip/journal/adva/6/5/10.1063/1.4950856
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4950856
2016-05-13
2016-12-02

Abstract

The heat-induced phase transitions of ε-HNIW, both neat and coated with various additives used in plastic bonded explosives, were investigated using powderX-ray diffraction and differential scanning calorimetry. It was found that ε-HNIW, after being held at 70°C for 60h, remained in the ε-phase. Applying other conditions, various phase transition parameters were determined, including T (the critical phase transition temperature), T (the temperature at which 50% of the phase transition is complete) and T (the percentage of γ-HNIW present in samples heated to 180°C). According to the above three parameters, additives were divided into three categories: those that delay phase transition, those that raise the critical temperature and the transition rate, and those that promote the phase transition. Based on the above data, a phase transition mechanism is proposed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4950856.html;jsessionid=ibqGCGpA61WS6Y5S5REmRHSN.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4950856&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4950856&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4950856'
Right1,Right2,Right3,