Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4950861
1.
1.M. Maldovan, Nature 503, 209 (2013).
http://dx.doi.org/10.1038/nature12608
2.
2.T. Han et al., Energy Environ. Sci. 6, 3537 (2013).
http://dx.doi.org/10.1039/c3ee41512k
3.
3.T. Han et al., Sci. Rep. 5, 10242 (2015).
http://dx.doi.org/10.1038/srep10242
4.
4.P.R. Bandaru, K.P. Vemuri, F.M. Canbazoglu, and R.S. Kapadia, AIP Adv. 5, 053403 (2015).
http://dx.doi.org/10.1063/1.4916220
5.
5.F. Chen and D.Y. Lei, Sci. Rep. 5, 11552 (2015).
http://dx.doi.org/10.1038/srep11552
6.
6.Y. Shi et al., Energ. Convers. Manage. 80, 110 (2014).
http://dx.doi.org/10.1016/j.enconman.2014.01.010
7.
7.K. Yazawa, G.L. Solbrekken, and A. Bar-Cohen, Adv. Packag. IEEE Trans. 28, 231 (2005).
http://dx.doi.org/10.1109/TADVP.2005.846854
8.
8.R. Kiflemariam and C.-X. Lin, Int. J. Therm. Sci. 94, 193 (2015).
http://dx.doi.org/10.1016/j.ijthermalsci.2015.02.012
9.
9.S. Guenneau, C. Amra, and D. Veynante, Opt. Express 20, 8207 (2012).
http://dx.doi.org/10.1364/OE.20.008207
10.
10.S. Narayana and Y. Sato, Phys. Rev. Lett. 108, 214303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.214303
11.
11.S. Guenneau and C. Amra, Opt. Express 21, 6578 (2013).
http://dx.doi.org/10.1364/OE.21.006578
12.
12.R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Phys. Rev. Lett. 110, 195901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.195901
13.
13.E.M. Dede, T. Nomura, P. Schmalenberg, and J.S. Lee, Appl. Phys. Lett. 103, 063501 (2013).
http://dx.doi.org/10.1063/1.4816775
14.
14.H. Xu, X. Shi, F. Gao, H. Sun, and B. Zhang, Phys. Rev. Lett. 112, 054301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.054301
15.
15.D.M. Nguyen, H. Xu, Y. Zhang, and B. Zhang, Appl. Phys. Lett. 107, 121901 (2015).
http://dx.doi.org/10.1063/1.4930989
16.
16.E.M. Dede, Comp. Mater. Sci. 50, 510 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.09.012
17.
17.E.M. Dede, T. Nomura, and J. Lee, Struct. Multidiscip. Opt. 49, 59 (2014).
http://dx.doi.org/10.1007/s00158-013-0963-0
18.
18.E.M. Dede, P. Schmalenberg, T. Nomura, and M. Ishigaki, IEEE Compon. Packag. Manuf. Technol. 5, 1763 (2015).
http://dx.doi.org/10.1109/TCPMT.2015.2473103
19.
19.K. Svanberg, Int. J. Numer. Meth. Eng. 24, 359 (1987).
http://dx.doi.org/10.1002/nme.1620240207
20.
20.M.P. Bendsoe and O. Sigmund, Topology Optimization – Theory, Methods and Applications, 2nd ed. (Springer-Verlag, 2004).
21.
21.F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Introduction to Heat Transfer, 5th ed. (John Wiley and Sons, 2007).
22.
22.COMSOL AB, COMSOL Multiphysics ver. 5.1, Stockholm (2015).
23.
23.G. Min and D.M. Rowe, J. Power Sources 38, 253 (1992).
http://dx.doi.org/10.1016/0378-7753(92)80114-Q
24.
24.A. Elefsiniotis, M. Weiss, Th. Becker, and U. Schmid, J. Electron. Mater. 42, 1907 (2013).
http://dx.doi.org/10.1007/s11664-012-2468-9
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4950861
Loading
/content/aip/journal/adva/6/5/10.1063/1.4950861
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4950861
2016-05-13
2016-10-01

Abstract

Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4950861.html;jsessionid=ZyMWcq6GVC60Z9l_NC4atOip.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4950861&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4950861&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4950861'
Right1,Right2,Right3,