Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4951693
1.
B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 1063 (1991).
http://dx.doi.org/10.1109/27.125031
2.
B. Pashaie, S. K. Dhali, and F. I. Honea, J. Phys. D 27, 2107 (1994).
http://dx.doi.org/10.1088/0022-3727/27/10/018
3.
J. Park, I. Henins, H. W. Herrmann, and G. S. Selwyn, Appl. Phys. Lette. 76, 288 (2000).
http://dx.doi.org/10.1063/1.125724
4.
A. Yehia, Phys. Plasmas 22, 013506 (2015).
http://dx.doi.org/10.1063/1.4905708
5.
W. Sun, B. Pashaei, S. K. Dhali, and F. Honea, J. appl. Phys. 79, 3438 (1996).
http://dx.doi.org/10.1063/1.361391
6.
A. Yehia, Ph.D. thesis, Assiut University, Assiut, Egypt, 2002.
7.
A. Yehia, A. Mizuno, and K. Takashima, J. Phys. D 33, 2807 (2000).
http://dx.doi.org/10.1088/0022-3727/33/21/321
8.
E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics (J. Wiley, New York, 1971).
9.
A. Yehia, Int. J. Plasma Environ. Sci. Technol. 2, 82 (2008).
10.
A. Yehia, J. Appl. Phys. 103, 073301 (2008).
http://dx.doi.org/10.1063/1.2901058
11.
Y. Yankelevich, M. Wolf, R. Baksht, A. Pokryvailo, J. Vinogradov, B. Rivin, and E. Sher, Plasma Sour. Sci. Technol. 16, 2386 (2007).
http://dx.doi.org/10.1088/0963-0252/16/2/023
12.
T. Namihiraa, D. Wangb, and H. Akiyam, Acta Phys. Pol. A 115, 953 (2009).
http://dx.doi.org/10.12693/APhysPolA.115.953
13.
V. Thonglek and T. Kiatsiriroat, J. Eng. Technol. Sci. 46, 271 (2014).
http://dx.doi.org/10.5614/j.eng.technol.sci.2014.46.3.3
14.
U. Kogelschatz, B. Eliasson, and M. Hirth, Ozone: Sci. Eng. 10, 367 (1988).
http://dx.doi.org/10.1080/01919518808552391
15.
S. Pekárek, Acta Polytechnica 43, 47 (2003).
16.
A. Yehia, Phys. Plasmas 19, 023503 (2012).
http://dx.doi.org/10.1063/1.3682983
17.
K. J. Boelter and J. H. Davidson, Aerosol Sci. Technol. 27, 689 (1997).
http://dx.doi.org/10.1080/02786829708965505
18.
E. C. Filippidou and A. Koukouliata, Prog Health Sci. 1, 144 (2011).
19.
G. Fava and M. Pierpaoli, American J. Environ. Eng. Sci. 2, 7 (2015).
20.
G. S. P. Castle, I. I. Inculet, and K. I. Burgess, IEEE Trans. Ind. Gen. Appl. IGA-5, 489 (1969).
http://dx.doi.org/10.1109/TIGA.1969.4181060
21.
A. S. Viner, P. A. Lawless, D. S. Ensor, and L. E. Sparks, IEEE Trans. Ind. Appl. 28, 504 (1992).
http://dx.doi.org/10.1109/28.137427
22.
A. Yehia, A. Mizuno, and M. A. M. EL-Osealy, Jpn. J. Appl. Phys., Part 1 43, 5558 (2004).
http://dx.doi.org/10.1143/JJAP.43.5558
23.
A. Yehia, J. Appl. Phys. 101, 023306 (2007).
http://dx.doi.org/10.1063/1.2426927
24.
A. Yehia and A. Mizuno, Phys. Plasmas 19, 033513 (2012).
http://dx.doi.org/10.1063/1.3695390
25.
A. Yehia and A. Mizuno, J. Appl. Phys. 113, 183301 (2013).
http://dx.doi.org/10.1063/1.4804065
26.
A. Mizuno, IEEE Trans. Dielectr. Electr. Insul. 7, 615 (2000).
http://dx.doi.org/10.1109/94.879357
27.
J. Podlinski, A. Niewulis, J. Mizeraczyk, and P. Atten, J. Electro. 66, 246 (2008).
http://dx.doi.org/10.1016/j.elstat.2008.01.003
28.
C. Kim, K.C. Noh, and J. Hwan, Aerosol and Air Quality Research 10, 446 (2010).
29.
H. A. Said, M. Aissou, H. Nouri, and Y. Zebboud, J. Electrical Systems 10-4, 392 (2014).
30.
O. J. Tassicker, Proc. IEE 121, 213 (1974).
31.
M. P. Sarma and W. Janischewskyj, Proc. IEE 116, 161 (1969).
32.
Y. Takahashi, M. Yoshida, Y. Anma, S. Kobayashi, and M. Endo, J. Phys. D 15, 639 (1982).
http://dx.doi.org/10.1088/0022-3727/15/4/016
33.
Y. Takahashi, etz Archiv Bd. 4, 347 (1982).
34.
G. Biskos, K. Reavell, and N. Collings, J. Electro. 63, 69 (2005).
http://dx.doi.org/10.1016/j.elstat.2004.07.001
35.
Alexandre A. Martins, Phys. Plasmas 19, 063502 (2012).
http://dx.doi.org/10.1063/1.4725499
36.
P. Intra, A. Yawootti, and P. Rattanadecho, J. Electro. 74, 37 (2015).
http://dx.doi.org/10.1016/j.elstat.2014.12.002
37.
X. Meng, H. Zhang, and J. Zhu, J. Phys. D 41, 065209 (2008).
http://dx.doi.org/10.1088/0022-3727/41/6/065209
38.
A. A. Azooz and S. I. Waysi, Plasma Sci. Technol. 16, 211 (2014).
http://dx.doi.org/10.1088/1009-0630/16/3/07
39.
H. A. Said, M. Aissou, H. Nouri, and Y. Zebboudj, J. Electrical Systems 10-4, 392 (2014).
40.
J. Chen and J. H. Davidson, Plasma Chem. Plasma Process. 22, 495 (2002).
http://dx.doi.org/10.1023/A:1021315412208
41.
K. Yanallah, F. Pontiga, and J. H. Chen, J. Phys. D 46, 345202 (2013).
http://dx.doi.org/10.1088/0022-3727/46/34/345202
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4951693
Loading
/content/aip/journal/adva/6/5/10.1063/1.4951693
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4951693
2016-05-18
2016-12-11

Abstract

This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equation included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4951693.html;jsessionid=tY_IkzHP9ufeQ1zNp4a9SUgL.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4951693&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4951693&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4951693'
Right1,Right2,Right3,