Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4952426
1.
M. N. Regueiro, P. Monceau, and J.-L. Hodeau, Nature 355, 237 (1992).
http://dx.doi.org/10.1038/355237a0
2.
H. Sumiya and T. Irifune, SEI Technical Review 66, 85 (2008).
3.
M. Kozlov, M. Hirabayashi, K. Nozaki, M. Tokumoto, and H. Ihara, Appl. Phys. Lett. 66, 1199 (1995).
http://dx.doi.org/10.1063/1.113856
4.
S. Yamanaka, N. S. Kini, A. Kubo, S. Jida, and H. Kuramoto, J. Am. Chem. Soc. 130, 4303 (2008).
http://dx.doi.org/10.1021/ja076761k
5.
S. Yamanaka, A. Kubo, K. Inumaru, K. Komaguchi, N. Kini, T. Inoue, and T. Irifune, Phys. Rev. Lett. 96, 076602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.076602
6.
Y. Iwasa, T. Arima, R. M. Fleming, T. Siegrist, O. Zhou, R. C. Haddon, L. J. Rothberg, K. B. Lyons, H. L. Carter, A. F. Hebard, R. Tycko, G. Dabbagh, J. J. Krajewski, G. A. Thomas, and T. Yagi, Science 264, 1570 (1994).
http://dx.doi.org/10.1126/science.264.5165.1570
7.
R. S. Kumar, M. G. Pravica, A. L. Cornelius, M. F. Nicol, M. Y. Hu, and P. C. Chow, Diamond Relat. Mater. 16, 1250 (2007).
http://dx.doi.org/10.1016/j.diamond.2006.11.103
8.
M. Hu, Z. Zhao, F. Tian, A. R. Oganov, Q. Wang, M. Xiong, C. Fan, B. Wen, J. He, D. Yu, H.-T. Wang, B. Xu, and Y. Tian, Sci. Rep. 3, 1331 (2013).
9.
H. Hirai and K.-I. Kondo, Science 253, 772 (1991).
http://dx.doi.org/10.1126/science.253.5021.772
10.
K. Yamada and A. B. Sawaoka, Carbon 32, 665 (1994).
http://dx.doi.org/10.1016/0008-6223(94)90088-4
11.
H. Vora and T. J. Moravec, J. Appl. Phys. 52, 6151 (1981).
http://dx.doi.org/10.1063/1.328514
12.
S. Endo, N. Idani, R. Oshima, K. Takano, and M. Wakatsuki, Phys. Rev. B 49, 22 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.22
13.
H. Hirai, K.-i. Kondo, and H. Sugiura, Appl. Phys. Lett. 61, 414 (1992).
http://dx.doi.org/10.1063/1.107899
14.
T. Singh, M. J. Behr, E. S. Aydil, and D. Maroudas, Chem. Phys. Lett. 474, 168 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.04.048
15.
W. L. Mao, H.-k. Mao, P. J. Eng, T. P. Trainor, M. Newville, C.-c. Kao, D. L. Heinz, J. Shu, Y. Meng, and R. J. Hemley, Science 302, 425 (2003).
http://dx.doi.org/10.1126/science.1089713
16.
F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).
http://dx.doi.org/10.1063/1.1841236
17.
J. R. Patterson, S. A. Catledge, Y. K. Vohra, J. Akella, and S. T. Weir, Phys. Rev. Lett. 85, 5364 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5364
18.
Y. Zhao and I. Spain, Phys. Rev. B 40, 993 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.993
19.
T. Yagi, W. Utsumi, M.-a. Yamakata, T. Kikegawa, and O. Shimomura, Phys. Rev. B 46, 6031 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6031
20.
M. Hanfland, H. Beister, and K. Syassen, Phys. Rev. B 39, 12598 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.12598
21.
X. Ji-an, M. Ho-kwang, and J. H. Russell, J. Phys.: Condens. Matter 14, 11549 (2002).
http://dx.doi.org/10.1088/0953-8984/14/44/514
22.
F. J. Ribeiro, P. Tangney, S. G. Louie, and M. L. Cohen, Phys. Rev. B 72, 214109 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.214109
23.
Q. Zhu, Q. Zeng, and A. R. Oganov, Phys. Rev. B 85, 201407(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.201407
24.
J.-T. Wang, C. Chen, and Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.075501
25.
X.-F. Zhou, G.-R. Qian, X. Dong, L. Zhang, Y. Tian, and H.-T. Wang, Phys. Rev. B 82, 134126 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134126
26.
F. Tian, X. Dong, Z. Zhao, J. He, and H. T. Wang, J. Phys.: Condens. Matter 24, 165504 (2012).
http://dx.doi.org/10.1088/0953-8984/24/16/165504
27.
M. Amsler, J. A. Flores-Livas, L. Lehtovaara, F. Balima, S. A. Ghasemi, D. Machon, S. Pailhès, A. Willand, D. Caliste, S. Botti, A. San Miguel, S. Goedecker, and M. A. L. Marques, Phys. Rev. Lett. 108, 065501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.065501
28.
R. Zhou and X. C. Zeng, J. Am. Chem. Soc. 134, 7530 (2012).
http://dx.doi.org/10.1021/ja301582d
29.
H. Niu, X.-Q. Chen, S. Wang, D. Li, W. L. Mao, and Y. Li, Phys. Rev. Lett. 108, 135501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.135501
30.
Q. Li, Y. Ma, A. R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, and G. Zou, Phys. Rev. Lett. 102, 175506 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175506
31.
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Comput. Phys. Commun. 183, 2063 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.05.008
32.
M. Hu, F. Tian, Z. Zhao, Q. Huang, B. Xu, L.-M. Wang, H.-T. Wang, Y. Tian, and J. He, J. Phys. Chem. C 116, 24233 (2012).
http://dx.doi.org/10.1021/jp3064323
33.
Z. Zhao, B. Xu, L.-M. Wang, X.-F. Zhou, J. He, Z. Liu, H.-T. Wang, and Y. Tian, ACS Nano 5, 7226 (2011).
http://dx.doi.org/10.1021/nn202053t
34.
Z. Zhao, F. Tian, X. Dong, Q. Li, Q. Wang, H. Wang, X. Zhong, B. Xu, D. Yu, J. He, H.-T. Wang, Y. Ma, and Y. Tian, J. Am. Chem. Soc. 134, 12362 (2012).
http://dx.doi.org/10.1021/ja304380p
35.
S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr. 220, 567 (2005).
36.
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
37.
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
38.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
39.
Q. Zhu, Q. Zeng, and A. R. Oganov, Phys. Rev. B 85, 201407 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.201407
40.
M. Hu, Y. Pan, K. Luo, J. He, D. Yu, and B. Xu, Carbon 91, 518 (2015).
http://dx.doi.org/10.1016/j.carbon.2015.05.027
41.
Q. Wang, B. Xu, J. Sun, H. Liu, Z. Zhao, D. Yu, C. Fan, and J. He, J. Am. Chem. Soc. 136, 9826 (2014).
http://dx.doi.org/10.1021/ja5035792
42.
X. Blase, Phys. Rev. B 67, 035211 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.035211
43.
S. Botti, J. A. Flores-Livas, M. Amsler, S. Goedecker, and M. A. L. Marques, Phys. Rev. B 86, 121204(R) (2012).
http://dx.doi.org/10.1103/PhysRevB.86.121204
44.
X.-Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).
http://dx.doi.org/10.1016/j.intermet.2011.03.026
45.
S. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, 1954.
46.
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
47.
M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
http://dx.doi.org/10.1038/381678a0
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4952426
Loading
/content/aip/journal/adva/6/5/10.1063/1.4952426
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4952426
2016-05-20
2016-09-25

Abstract

Four 2 3 hybrid carbon allotropes are proposed on the basis of first principles calculations. These four carbon allotropes are energetically more favorable than graphite under suitable pressure conditions. They can be assembled from graphite through intralayer wrinkling and interlayer buckling, which is similar to the formation of diamond from graphite. For one of the 2 3 hybrid carbon allotropes, C24, the electron diffraction patterns match these of -carbon, which is synthesized from shock-compressed graphite (H. Hirai and K. Kondo, Science, 1991, , 772). The allotropes exhibit tunable electronic characteristics from metallic to semiconductive with band gaps comparable to those of silicon allotropes. They are all superhard materials with Vickers hardness values comparable to that of cubic BN. The 2 3 hybrid carbon allotroes are promising materials for photovoltaic electronic devices, and abrasive and grinding tools.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4952426.html;jsessionid=Dn1di3iW5nlWsSbjjj5Pt4ku.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4952426&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4952426&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4952426'
Right1,Right2,Right3,