Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4952428
1.
G. A. Prinz, Phys. Today 48(4), 58 (1995);
http://dx.doi.org/10.1063/1.881459
G. A. Prinz, Science 282, 1660 (1998).
http://dx.doi.org/10.1126/science.282.5394.1660
2.
S. A. wolf, D. D. Awschalom, R. A. Buhrmann, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
3.
A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, Phys. Rev.Lett. 84, 2481 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2481
4.
M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985);
http://dx.doi.org/10.1103/PhysRevLett.55.1790
M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988);
http://dx.doi.org/10.1103/PhysRevB.37.5312
M. Johnson, Phys. Rev. Lett. 70, 2142 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.2142
5.
R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature (London) 402, 787 (1999).
http://dx.doi.org/10.1038/45502
6.
Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature (London) 402, 790 (1999).
http://dx.doi.org/10.1038/45509
7.
I. Malajovich, J. M. Kikkawa, D. D. Awschalom, J. J. Berry, and N. Samarth, Phys. Rev. Lett. 84, 1015 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1015
8.
F. J. Jedema, H. B. heersche, A. T. Filip, J. J. A. Baselmans, and B. J. van Wees, Nature (London) 416, 713 (2002).
http://dx.doi.org/10.1038/416713a
9.
F. J. Jedema, A. T. Filip, and B. J. van Wees, Nature (London) 410, 345 (2001);
http://dx.doi.org/10.1038/35066533
F. J. Jedema, M. S. Nijboer, A. T. Filip, and B. J. van Wees, Phys. Rev. B 67, 085319 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085319
10.
T. Kimura, J. Hamrle, and Y. Otani, Phys. Rev. B 72, 014461 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014461
11.
S. Műhlbauer et al., “Skyrmion Lattice in a Chiral Magnet.,” Science 323 (2009).
12.
C. Pfleiderer and A. Rosch, “Condensed-matter physics: Single skyrmions spotted.,” Nature (2010).
13.
A. Neubauer et al., “Topological Hall Effect in the A Phase of MnSi.,” Phys. Rev.Lett. 102, 186602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.186602
14.
K. Everschor, “Current-Induced Dynamics of Chiral Magnetic Structures,” Ph.D. thesis,University of Cologne (2012).
15.
M. Baedorf, “Berry-Phase und Spinstreuung,” Bachelor’s thesis, University of Cologne (2011).
16.
S.M. Schroeter, “Berry Phase Physics and Spin Scattering in Time-Dependent Magnetic Fields,” Bachelor’s thesis, University of Cologne (2012).
17.
Hafeez.Y. H, E.N Chifu, and Ibrahim M.M, “Schrodinger Equation for a Half Spin Electron in a Time Dependent Magnetic Field,” Progress in Physics (12), 15-19 (2016).
18.
Wang, Cui-Zhi et al., “Spin flop transitions under strong magnetic field in orbital ordered KCuF3,” Physica B: Physics of Condensed Matter 405(5), 1423-1427 (2010).
http://dx.doi.org/10.1016/j.physb.2009.12.012
19.
M. Moskalets and M. Büttiker, “Floquet scattering theory of quantum pumps.,” Phys. Rev. B 66, 205320 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.205320
20.
J. H. Shirley, “Solution of the Schrodinger Equation with a Hamiltonian Periodic in Time.,” Phys. Rev. 138, B979B987 (1965).
http://dx.doi.org/10.1103/PhysRev.138.B979
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4952428
Loading
/content/aip/journal/adva/6/5/10.1063/1.4952428
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4952428
2016-05-20
2016-09-27

Abstract

In this article, the behavior of a half spin particle is studied. Specifically an electron with mass m, when passing through a magnetic field with fixed strength B is examined. A magnetic impurity is considered as a scatterer of a half spin particle in one dimension. This corresponds for example to a defect in the local magnetic structure inducing a magnetic field, e.g. as a result of strong spin-orbit coupling. From this set-up, the spin-flipping scattering processes are observed. Different profiles of Spin-Flip-Rate (SFR) against frequencies ω and amplitudes U are drawn respectively, for angle 0, and different values of, μB, and radius R.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4952428.html;jsessionid=mW8tniwF9A9Ofi93BPDkcfwW.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4952428&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4952428&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4952428'
Right1,Right2,Right3,