Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4952755
1.
R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
2.
D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, Reports Prog. Phys. 75, 076502 (2012).
http://dx.doi.org/10.1088/0034-4885/75/7/076502
3.
J. J. Yang, D. B. Strukov, and D. R. Stewart, Nat. Nanotechnol. 8, 13 (2013).
http://dx.doi.org/10.1038/nnano.2012.240
4.
I. Vourkas and G. C. Sirakoulis, Memristor-Based Nanoelectronic Computing Circuits and Architectures, Emergence, Complexity and Computation Vol. 19 (Springer International Publishing, Cham, 2016)
http://dx.doi.org/10.1007/978-3-319-22647-7
5.
S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Lett. 10, 1297 (2010).
http://dx.doi.org/10.1021/nl904092h
6.
G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T. Prodromakis, Nanotechnology 24, 384010 (2013), arXiv:1302.7007.
http://dx.doi.org/10.1088/0957-4484/24/38/384010
7.
V. Semenov, I. Korneev, P. Arinushkin, G. Strelkova, T. Vadivasova, and V. Anishchenko, Eur. Phys. J. Spec. Top. 224, 1553 (2015).
http://dx.doi.org/10.1140/epjst/e2015-02479-6
8.
M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, Nat. Mater. 10, 625 (2011).
http://dx.doi.org/10.1038/nmat3070
9.
D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
10.
N. Ghenzi, M. J. Sánchez, and P. Levy, J. Phys. D. Appl. Phys. 46, 415101 (2013).
http://dx.doi.org/10.1088/0022-3727/46/41/415101
11.
J. J. Yang, J. Borghetti, D. Murphy, D. R. Stewart, and R. S. Williams, Adv. Mater. 21, 3754 (2009).
http://dx.doi.org/10.1002/adma.200900822
12.
X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, Appl. Phys. Lett. 87, 233506 (2005).
http://dx.doi.org/10.1063/1.2139843
13.
A. Ignatiev, N. J. Wu, X. Chen, S. Q. Liu, C. Papagianni, and J. Strozier, Phys. status solidi 243, 2089 (2006).
http://dx.doi.org/10.1002/pssb.200666805
14.
E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Nat. Mater. 9, 403 (2010).
http://dx.doi.org/10.1038/nmat2748
15.
I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, Nanotechnology 22, 254003 (2011).
http://dx.doi.org/10.1088/0957-4484/22/28/289502
16.
F. Zhuge, K. Li, B. Fu, H. Zhang, J. Li, H. Chen, L. Liang, J. Gao, H. Cao, Z. Liu, and H. Luo, AIP Adv. 5, 057125 (2015).
http://dx.doi.org/10.1063/1.4921089
17.
P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. Stanley Williams, Nanotechnology 20, 425204 (2009).
http://dx.doi.org/10.1088/0957-4484/20/42/425204
18.
S. Yu, J. Liang, Y. Wu, and H.-S. P. Wong, Nanotechnology 21, 465202 (2010).
http://dx.doi.org/10.1088/0957-4484/21/46/465202
19.
R. K. Budhathoki, M. P. Sah, S. P. Adhikari, H. Kim, and L. Chua, IEEE Trans. Circuits Syst. I Regul. Pap. 60, 2688 (2013).
http://dx.doi.org/10.1109/TCSI.2013.2244320
20.
S. Ambrogio, S. Balatti, D. C. Gilmer, and D. Ielmini, IEEE Trans. Electron Devices 61, 2378 (2014).
http://dx.doi.org/10.1109/TED.2014.2325531
21.
I. Vourkas and G. C. Sirakoulis, Bionanoscience 4, 166 (2014).
http://dx.doi.org/10.1007/s12668-014-0132-y
22.
E. Lehtonen and M. Laiho, in 2010 12th Int. Work. [Cell. Nanoscale Networks Their Appl. (CNNA) (2010)]
http://dx.doi.org/10.1109/CNNA.2010.5430304
23.
A. G. Radwan and M. E. Fouda, On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor, Studies in Systems, Decision and Control Vol. 26 (Springer International Publishing, Cham, 2015).
24.
J. G. Simmons, J. Appl. Phys. 34, 1793 (1963), arXiv:arXiv:1011.1669v3.
http://dx.doi.org/10.1063/1.1702682
25.
M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, and R. S. Williams, J. Appl. Phys. 106, 074508 (2009).
http://dx.doi.org/10.1063/1.3236506
26.
L. Chua, Circuit Theory, IEEE Trans. 18, 507 (1971).
http://dx.doi.org/10.1109/TCT.1971.1083337
27.
P. S. Georgiou, S. N. Yaliraki, E. M. Drakakis, and M. Barahona, Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 2210 (2012).
http://dx.doi.org/10.1098/rspa.2011.0585
28.
C. Lenser, A. Koehl, I. Slipukhina, H. Du, M. Patt, V. Feyer, C. M. Schneider, M. Lezaic, R. Waser, and R. Dittmann, Adv. Funct. Mater. 25, 6360 (2015).
http://dx.doi.org/10.1002/adfm.201500851
29.
K. Fujiwara, T. Nemoto, M. J. Rozenberg, Y. Nakamura, and H. Takagi, Jpn. J. Appl. Phys. 47, 6266 (2008).
http://dx.doi.org/10.1143/JJAP.47.6266
30.
Y. N. Joglekar and S. J. Wolf, Eur. J. Phys. 30, 661 (2009).
http://dx.doi.org/10.1088/0143-0807/30/4/001
31.
E. Linn, A. Siemon, R. Waser, and S. Menzel, IEEE Trans. Circuits Syst. I Regul. Pap. 61, 2402 (2014).
http://dx.doi.org/10.1109/TCSI.2014.2332261
32.
Z. Biolek, D. Biolek, and V. Biolková, Radioengineering 18, 210 (2009).
33.
S. Benderli and T. Wey, Electron. Lett. 45, 377 (2009).
http://dx.doi.org/10.1049/el.2009.3511
34.
L. Chua, Appl. Phys. A 102, 765 (2011).
http://dx.doi.org/10.1007/s00339-011-6264-9
35.
M. J. Rozenberg, M. J. Sánchez, R. Weht, C. Acha, F. Gomez-Marlasca, and P. Levy, Phys. Rev. B - Condens. Matter Mater. Phys. 81, 20 (2010), arXiv:1001.0703.
http://dx.doi.org/10.1103/PhysRevB.81.115101
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4952755
Loading
/content/aip/journal/adva/6/5/10.1063/1.4952755
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4952755
2016-05-23
2016-09-29

Abstract

Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter . Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4952755.html;jsessionid=Tjh-I9pLhELpwYWhe_HRm24w.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4952755&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4952755&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4952755'
Right1,Right2,Right3,