Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Di Ventra, S. Evoy, and J. R. Heflin, (eds.), in Introduction to Nanoscale Science and Technology, Series: Nanostructure Science and Technology (Springer, 2004).
L. Theodore, Nanotechnology: Basic calculations for engineers and scientists (Wiley, 2005).
L. Banyai and S. W. Koch, Semiconductor quantum dots, Series on Atomic, Molecular and Optical Physics Vol. 2 (World Scientific, 1993).
L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots, Nanoscale and Technology Series (Springer, 1998).
Y. Masumoto and T. Takagahara, (eds.), in Semiconductor quantum dots: Physics, Spectroscopy and Applications, Nanoscience and Technology Series (Springer, 2002).
O. Ciftja, Phys. Scr. 88, 058302 (2013).
P. A. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).
A. H. MacDonald and M. D. Johnson, Phys. Rev. Lett. 70, 3107 (1993).
S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Jpn. J. Appl. Phys. 36, 3917 (1997).
S. Sasaki, D. G. Austing, and S. Tarucha, Physica B 256, 157 (1998).
D. G. Austing, S. Sasaki, S. Tarucha, S. M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B 60, 11514 (1999).
O. Ciftja, Mod. Phys. Lett. B 23, 3055 (2009).
O. Ciftja, Physica B 404, 2629 (2009).
O. Ciftja, J. Phys.: Condens. Matter 19, 046220 (2007).
E. Rasanen, H. Saarikoski, V. N. Stavrou, A. Harju, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 67, 235307 (2003).
L. L. Sohn, L. P. Kouwenhoven, and G. Schön, (eds.), in Mesoscopic Electron Transport, Vol.345 of NATO ASI Series, Series E: Applied Sciences (Kluwer Academic Publishers, Dordrecht, 1997).
D. P. DiVincenzo, Science 270, 255 (1995).
Y. A. Bychkov and E. I. Rashba, J. Phys. C: Solid State Phys. 17, 6039 (1984).
E. I. Rashba, Physica E 20, 189 (2004).
J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
J.P. Heida, B. J. van Wees, J. J. Kuipers, T. M. Klapwijk, and G. Borghs, Phys. Rev. B 57, 11911 (1998).
S. J. Papadakis, E. P. DePoortere, H. C. Manoharan, M. Shayegan, and R. Winkler, Science 283, 2056 (1999).
M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
V. Gudmundson, Y-Y. Lin, C-S. Tang, V. Moldoveanu, J. H. Bardarson, and A. Manolescu, Phys. Rev. B 71, 235302 (2005).
M.P. Trushin and A. L. Chudnovskiy, Eur. Phys. J. B 52, 547 (2006).
O. Kálmán, P. Földi, M. G. Benedict, and F. M. Peeters, Physica E 40, 567 (2008).
S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).
H.-A. Engel and D. Loss, Phys. Rev. B 62, 10238 (2000).

Data & Media loading...


Article metrics loading...



There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of a new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd