Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4952966
1.
Q. Pan, K. Huang, S. Ni, F. Yang, and D. He, Mater. Res. Bull. 43, 14401447 (2008).
http://dx.doi.org/10.1016/j.materresbull.2007.06.038
2.
A. P. Alivisatos, Science 271, 933937 (1996).
http://dx.doi.org/10.1126/science.271.5251.933
3.
H. T. Zhang, G. Wu, and X. H. Chen, Mater. Lett. 59, 37283731 (2005).
http://dx.doi.org/10.1016/j.matlet.2005.07.007
4.
P. Yang, M. Lu, C. F. Song, G. Zhou, D. Xu, and D. R. Yuan, J. Phys. Chem. Solids 63, 20472051 (2002).
http://dx.doi.org/10.1016/S0022-3697(02)00192-0
5.
A. Wold and K. Dwight, J. Solid State Chem. 96, 5358 (1992).
http://dx.doi.org/10.1016/S0022-4596(05)80296-8
6.
L. Wang, Y. Zhu, H. Li, Q. Li, and Y. Qian, J. Solid State Chem. 183, 223227 (2010).
http://dx.doi.org/10.1016/j.jssc.2009.10.021
7.
N. Chen, J. H. Zeng, F. Q. Li, W. Q. Zhang, and Y. T. Qian, J. Cryst. Growth 235, 505510 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)01797-3
8.
M. S. Niasari, G. B. Monfared, H. Emadi, and M. Enhessari, C. R. Chimie 16, 929936 (2013).
http://dx.doi.org/10.1016/j.crci.2013.01.011
9.
J. H. Wang, Z. Cheng, J. L. Bredas, and M. Liu, J. Chem. Phys. 127, 8 (2007).
10.
W. Wang, S. Y. Wang, Y. L. Gao, K. Y. Wang, and M. Liu, Mater. Sci. Eng. B 133, 167171 (2006).
http://dx.doi.org/10.1016/j.mseb.2006.06.028
11.
R. Luo, X. Sun, L. Yan, and W. Chen, Chem. Lett. 33, 830831 (2004).
http://dx.doi.org/10.1246/cl.2004.830
12.
H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, J. Chen, and J. Zhang, Nature DOI: 10.1038/srep03577 (2014).
http://dx.doi.org/10.1038/srep03577
13.
H. Deng, C. Chen, Q. Peng, and Y. Li, Mater. Chem. Phys. 100, 224229 (2006).
http://dx.doi.org/10.1016/j.matchemphys.2005.12.033
14.
G. An, C. Liu, Y. Hou, X. Zhang, and Y. Liu, Mater. Lett. 62, 26432646 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.01.005
15.
Z. Meng, Y. Peng, W. Yu, and Y. Qian, Mater. Chem. Phys. 74, 230233 (2002).
http://dx.doi.org/10.1016/S0254-0584(01)00472-2
16.
S. L. Yang, H. B. Yao, M. R. Gao, and S. H. Ya, Cryst. Eng. Comm. 11, 13831390 (2009).
http://dx.doi.org/10.1039/b900444k
17.
V. P. Timchenko, A. L. Novozhilov, and O. A. Slepysheva, Russ. J. Gen. Chem 74(7), 10461050 (2004).
http://dx.doi.org/10.1023/B:RUGC.0000045862.69442.aa
18.
J. Liu, C. G. Duan, W. G. Yin, W. N. Mei, R. W. Smith, and J. R. Smith, J. Chem. Phys. 119(5), (2003).
19.
K. Hayata, M. A. Rafiq, A. Rahman, A. A. Khan, and M. M. Hasan, Prog. Nat. Sci. 23(4), 388394 (2013).
http://dx.doi.org/10.1016/j.pnsc.2013.06.016
20.
A. Rahman, M. A. Rafiq, M. Hasan, M. Khan, S. Karim, and S. O. Cho, J. Nanopart Res. 15, 1703 (2013).
http://dx.doi.org/10.1007/s11051-013-1703-5
21.
K. Hayat, M. A. Rafiq, S. K. Durrani, and M. M. Hasan, Physica B. 406, 309314 (2011).
http://dx.doi.org/10.1016/j.physb.2010.09.026
22.
P. L. Bonora, F. Deflorian, and L. Fedrizzi, Electrochim. Acta 41, 10731082 (1996).
http://dx.doi.org/10.1016/0013-4686(95)00440-8
23.
H. Ma, S. Chen, B. Yin, S. Zhao, and X. Liu, Corro. Sci 45, 867882 (2003).
http://dx.doi.org/10.1016/S0010-938X(02)00175-0
24.
Z. Imran, M. A. Rafiq, and M. M. Hasan, AIP Advances 4, 067137 (2014).
http://dx.doi.org/10.1063/1.4885462
25.
M. Ahmad, M. A. Rafiq, K. Rasool, Z. Imran, and M. M. Hasan, J. Appl. Phys. 113, 043704 (2013).
http://dx.doi.org/10.1063/1.4781004
26.
A. M. M. Farea, S. Kumar, K. M. Batoo, A. Yousef, C. G. Lee, and Alimuddin, J. Alloy. Compd. 464, 361369 (2008).
http://dx.doi.org/10.1016/j.jallcom.2007.09.126
27.
R. Gerhardt, J. Phys. Chem. Solids 55(12), 14911506 (1994).
http://dx.doi.org/10.1016/0022-3697(94)90575-4
28.
A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).
29.
M. Ahmad, M. A. Rafiq, and M. M. Hasan, J. Appl. Phys. 114, 133702 (2013).
http://dx.doi.org/10.1063/1.4823810
30.
S. Ghatak, A. K. Meikap, M. Sinha, and S. K. Pradhan, Mater. Sci. Appl. 1, 177186 (2010).
31.
E. V. Gopalan, K. A. Malini, S. Sagar, D. S. Kumar, Y. Yoshida, I. A. Al-Omari, and M. R. Anantharaman, J. Phys. D: Appl. Phys. 42, 165005 (2009).
http://dx.doi.org/10.1088/0022-3727/42/16/165005
32.
M. K. Fayek, M. F. Mostafa, F. Sayedahmed, S. S. Ata-Allah, and M. Kaiser, J. Magn. Magn. Mater. 210, 189195 (2000).
http://dx.doi.org/10.1016/S0304-8853(99)00612-5
33.
N. Rezlescu and E. Rezlescu, Phys. Stat. Sol. (a) 23, 575 (1974).
http://dx.doi.org/10.1002/pssa.2210230229
34.
I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 (1969).
http://dx.doi.org/10.1080/00018736900101267
35.
Lily, K. Kumari, K. Prasad, and R.N.P. Choudhary, J. Alloy Compd. 453, 325331 (2008).
http://dx.doi.org/10.1016/j.jallcom.2006.11.081
36.
Prasad, Lily, K. KumarI, K. P. Chandra, K. L. Yadav, and S. Sen, Appl. Phys. A 88, 377383 (2007).
http://dx.doi.org/10.1007/s00339-007-3989-6
37.
A. K. Roy, A. Singh, K. Kumari, K. A. Nath, A. Prasad, and K. Prasad, ISRN Ceramics doi:10.5402/2012/854831 (2012).
http://dx.doi.org/10.5402/2012/854831
38.
M. A. Afifi, E. Abd El-Wahabb, A. E. Bekheet, and H. E. Atyia, Acta Phys. Pol. A 98, 401409 (2000).
http://dx.doi.org/10.12693/APhysPolA.98.401
39.
J. Suchanicz, Mater. Sci. Eng. B 55, 114118 (1998).
http://dx.doi.org/10.1016/S0921-5107(98)00188-3
40.
M. A. Rafiq, M, N. Rafiq, and K. V. Saravananb, Ceram. Int 41, 1143611444 (2015).
http://dx.doi.org/10.1016/j.ceramint.2015.05.107
41.
S. V. Rathan and G. Govindaraj, Solis State Sci. 12, 730735 (2010).
http://dx.doi.org/10.1016/j.solidstatesciences.2010.02.030
42.
A. Tabib, N. Sdiri, H. Elhouichet, and M. Ferid, J. Alloy. Compd. 622, 687694 (2015).
http://dx.doi.org/10.1016/j.jallcom.2014.10.092
43.
N. Kanagathara, N. G. Renganathan, M. K. Marchewka, N. Sivakumar, K. Gayathri, P. Krishnan, S. Gunasekaran, and G. Anbalagan, Spectrochim. Acta A 101, 112118 (2013).
http://dx.doi.org/10.1016/j.saa.2012.09.057
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4952966
Loading
/content/aip/journal/adva/6/5/10.1063/1.4952966
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4952966
2016-05-24
2016-09-25

Abstract

Temperature and frequency dependent ac electrical measurements were used to explore density of states, conduction mechanisms and dielectric properties of nickel disulfide (NiS ) nanoparticles. The NiS nanoparticles were prepared by conventional one step solid state reaction method at 250 °C. X-ray diffraction (XRD) confirmed cubic phase of prepared nanoparticles. Scanning electron microscope (SEM) images revealed presence of irregular shaped nanoparticles as small as 50 nm. The ac electrical measurements were carried out from 300 K to 413 K. Two depressed semicircular arcs from 20 Hz to 2 MHz showed presence of bulk and grain boundary phases in NiS nanoparticles at all temperatures. Small polaron hopping conduction from 300 K to 393 K and correlated barrier hopping conduction mechanism at temperatures higher than 393 K was observed. High value of density of states (of the order of 1024 eV−1cm−3) was calculated from ac conductivity. At low frequencies high values (of the order of 104-107) of real part of dielectric constant (ε′) were observed at different temperatures. These observations suggest that NiS nanoparticles may find applications in electronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4952966.html;jsessionid=0ULg-h1c2hcoUIu5N1Z3CyCT.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4952966&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4952966&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4952966'
Right1,Right2,Right3,