Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Pauleve, D. Dautreppe, J. Laugier, and L. Neél, J. Phys. Radium 23, 841 (1962).
L. Neél, J. Paulevé, R. Pauthenet, J. Laugier, and D. Dautreppe, J. Appl. Phys. 35, 873 (1964).
J. F. Petersen, M. Aydin, and J. M. Knudsen, Phys. Lett. 62A, 192 (1977).
J. F. Albertsen, G. B. Jensen, and J. M. Knudsen, Nature 273, 453 (1978).
S. Metha, P. M. Novotny, D. B. Williams, and J. I. Goldstein, Nature 284, 151 (1980).
R. S. Clarke, Jr. and E. R. D. Scott, American Mineralogist 65, 624 (1980).
J. Paulevé, A. Chamberod, K. Krebs, and A. Bourret, J. Appl. Phys. 39, 989 (1968).
M. Kotsugi, C. Mitsumata, H. Maruyama, T. Wakita, T. Taniuchi, K. Ono, M. Suzuki, N. Kawamura, N. Ishimatsu, M. Oshima, Y. Watanabe, and M. Taniguchi, Appl. Phys. Exp. 3, 013001 (2010).
M. Kotsugi, H. Maruyama, N. Ishimatsu, N. Kawamura, M. Suzuki, M. Mizuguchi, K. Osaka, T. Matsumoto, T. Ohkochi, T. Ohtsuki, T. Kojima, M. Mizuguchi, K. Takanashi, and Y. Watanabe, J. Phys.: Cond. Matt. 26, 064206 (2014).
L. H. Lewis, A. Mubarok, E. Poirier, N. Bordeaux, P. Manchanda, A. Kashyap, R. Skomski, J. Goldstein, F. E. Pinkerton, R. K. Mishra, R. C. Kubic, Jr., and K. Barmak, J. Phys.: Cond. Matt. 26, 064213 (2014).
L. H. Lewis, F. E. Pinkerton, N. Bordeaux, A. Mubarok, E. Poirier, J. I. Goldstein, R. Skomski, and K. Barmak, IEEE Magn. Lett. 5, 5500104 (2014).
T. Nagata, J. Geophysical Research 88, Suppl. A779 (1983).
A. Chamberod, J. Laugier, and J. M. Penisson, J. Magn. Magn. Mater. 10, 139 (1979).
T. Shima, K. Okamura, S. Mitani, and K. Takanashi, J. Magn. Magn. Mater. 310, 2213 (2007).
M. Mizuguchi, T. Kojima, M. Kotsugi, T. Koganezawa, K. Osaka, and K. Takanashi, J. Magn. Soc. Jpn. 35, 370 (2011).
T. Kojima, M. Mizuguchi, T. Koganezawa, M. Ogiwara, M. Kotsugi, T. Ohtsuki, T.-Y. Tashiro, and K. Takanashi, J. Phys. D: Appl. Phys. 47, 425001 (2014).
S. Lee, K. Edalati, H. Iwaoka, Z. Horita, T. Ohtsuki, T. Ohkochi, M. Kotsugi, T. Kojima, M. Mizuguchi, and K. Takanashi, Philos. Mag. Lett. 94, 639 (2014).
A. Makino, P. Sharma, K. Sato, A. Takeuchi, Y. Zhang, and K. Takenaka, Sci. Rep. 5, 16627 (2015).
J. Labár, Microsc. Microanal. 14, 287 (2008).
P. Sharma, X. Zhang, Y. Zhang, and A. Makino, Scr. Mater. 95, 3 (2015).
G. Cliff and G. W. Lorimer, J. Microsc. 103, 203 (1975).
K. B. Reuter, D. B. Williams, and J. I. Goldstein, Metall. Mater. Trans. 20A, 711 (1989).
K. B. Reuter, D. B. Williams, and J. I. Goldstein, Metall. Mater. Trans. 20A, 719 (1989).
F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988).
U. Köster and J. Meinhardt, Mater. Sci. Eng. A 178, 271 (1994).
P. A. Doyle and P. S. Turner, Acta Cryst. A24, 390 (1968).
D. Rez, P. Rez, and I. Grant, Acta Cryst. A50, 481 (1994).

Data & Media loading...


Article metrics loading...



The microstructure of newly developed hard magnetic Fe Ni SiBPCu (x = 2 to 8 at%) nanocrystalline alloy ribbons has been studied by transmission electron microscopy (TEM) and electron diffraction. A high-density polycrystalline grains, ∼30 nm in size, were formed in a ribbon after annealing at 673 K for 288 hours. Elemental mapping of the annealed specimen revealed the coexistence of three regions, Fe-rich, Ni-rich, and nearly equiatomic Fe-Ni, with areal fractions of 37%, 40%, and 23 %, respectively. The equiatomic L1-type ordered phase of FeNi was detected in between the Fe and Ni-rich phases. The presence of superlattice reflections in nanobeam electron diffraction patterns confirmed the formation of the hard magnetic L1 phase beyond any doubt. The L1 phase of FeNi was detected in alloys annealed in the temperature range of 673 to 813 K. The present results suggest that the order-disorder transition temperature of L1 FeNi is higher than the previously reported value (593 K). The high diffusion rates of the constituent elements induced by the crystallization of an amorphous phase at relatively low temperature (∼673K) are responsible for the development of atomic ordering in FeNi.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd