Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. L. Wang, D. Cha, J. Liu, and C. Chen, “Ge/Si self-assembled quantum dots and their optoelectronic device applications,” Proc IEEE 95, 18661883 (2007).
Z. Liu, T. Zhou, L. Li, Y. Zuo, C. He, C. Li, C. Xue, B. Cheng, and Q. Wang, “Ge/Si quantum dots thin film solar cells,” Appl. Phys. Lett. 103, 082101 (2013).
H. T. Chang, S. Y. Wang, and S. W. Lee, “Designer Ge/Si composite quantum dots with enhanced thermoelectric properties,” Nanoscale 6, 35933598 (2014).
D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett. 64, 19431946 (1990).
A. I. Yakimov, A. V. Dvurechenski, A. I. Nikiforov, S. V. Chaoekovski, and S. A. Tiis, “Ge/Si photodiodes with embedded arrays of Ge quantum dots for the near infrared (1.3–1.5 μm) region,” Semiconductors 37, 13831388 (2003).
A. Alkhatib and A. Nayfeh, “A complete physical germanium-on-silicon quantum dot self-assembly process,” Sci. Rep. 3, 14 (2013).
M. Borgström, V. Zela, and W. Seifert, “Arrays of Ge islands on Si(001) grown by means of electron-beam pre-patterning,” Nanotechnology 14, 264267 (2003).
A. Karmous, A. Cuenat, A. Ronda, and I. Berbezie, “Ge dot qrganization on Si substrates patterned by focused ion beam,” Appl. Phys. Lett. 85, 64016403 (2004).
A. Portavoce, A. Ronda, and I. Berbezier, “Sb-surfactant mediated growth of Ge nanostructures,” Mat. Sci. Eng. B 89, 205210 (2002).
A. Beyer, E. Müller, H. Sigg, S. Stutz, D. Grützmacher, O. Leifeld, and K. Ensslin, “Size control of carbon-induced Ge quantum dots,” Appl. Phys. Lett. 77, 32183220 (2000).
Y. Wakayamaa, L. V. Sokolovb, N. Zakharovc, P. Wernerc, and U. Göselec, “Precise control of size and density of self-assembled Ge dot on Si (100) by carbon-induced strain-engineering,” Appl. Surf. Sci. 216, 419423 (2003).
A. A. Shklyaev, M. Shibata, and M. Ichikawa, “High-density ultrasmall epitaxial Ge islands on Si (111) surfaces with a SiO2 coverage,” Phys. Rev. B 62, 15401543 (2000).
C. Dais, G. Mussler, T. Fromherz, E. Müller, H. H. Solak, and D. Grützmacher, “SiGe quantum dot crystals with periods down to 35 nm,” Nanotechnology 26, 255302 (2015).
G. Han, Y. Zeng, Y. Liu, J. Yu, B. Cheng, and H. Yang, “Small SiGe quantum dots obtained by excimer laser annealing,” J. Cryst. Growth 310, 37463751 (2008).
A. O. Er and H. E. Elsayed-Ali, “Excitation-induced germanium quantum dot formation on Si (100) - (2×1),” J. Appl. Phys. 108, 034303 (2010).
A. P. D. Pino, E. Gyorgy, I. C. Marcus, J. Roqueta, and M. I. Alonso, “Effects of pulsed laser radiation on epitaxial self-assembled Ge quantum dots grown on Si substrates,” Nanotechnology 22, 295304 (2011).
C. M. Clegg and H. Yang, “Guided assembly of quantum dots through selective laser heating,” Sol. Energ. Mat. Sol. C. 108, 252255 (2013).
D. Qi, X. Li, P. Wang, S. Chen, W. Huang, C. Li, K. Huang, and H. Lai, “Evolution of laser-induced specific nanostructures on sige compounds via laser irradiation intensity tuning,” Photon. J. 6, 252255 (2014).
S. M. Sze, Physics of Semiconductor Devices (John Wiley and Sons, New York, 1981).
J. A. Floro, M. B. Sinclair, E. Chason, L. B. Freund, R. D. Twesten, R. Q. Hwang, and G. A. Lucadamo, “Novel SiGe island coarsening kinetics: Ostwald ripening and elastic interactions,” Phys. Rev. Lett. 84, 701704 (2000).
A. V. Kolobov, “Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations,” J. Appl. Phys. 87, 29262930 (2000).
M. Fujii, S. Hayashi, and K. Yamamoto, “Growth of Ge microcrystals in SiO2 thin film matrices: A Raman and electron microscopic study,” Jpn. J. Appl. Phys. 30, 687694 (1991).
X. Deng, J. D. Weil, and M. Krishnamurthy, “Temperature dependence of SiGe coherent island formation on Si (100): Anomalous reentrant behavior,” Phys. Rev. Lett. 80, 47214724 (1998).
M. Gavelle, E. M. Bazizi, E. Scheid, P. F. Fazzini, F. Cristiano, C. Armand, W. Lerch, S. Paul, Y. Campidelli, and A. Halimaoui, “Detailed investigation of GeSi interdiffusion in the full range of Si 1−x Ge x(0 ≤ x ≤ 1) composition,” J. Appl. Phys. 104, 113524 (2008).

Data & Media loading...


Article metrics loading...



The capability to fabricate Ge/Si quantum dots with small dot size and high dot density uniformly over a large area is crucial for many applications. In this work, we demonstrate that this can be achieved by scanning a pre-deposited Ge thin layer on Si substrate with a line-focused pulsed laser beam to induce formation of quantum dots. With suitable setting, Ge/Si quantum dots with a mean height of 2.9 nm, a mean diameter of 25 nm, and a dot density of 6×1010 cm−2 could be formed over an area larger than 4 mm2. The average size of the laser-induced quantum dots is smaller while their density is higher than that of quantum dots grown by using Stranski-Krastanov growth mode. Based on the dependence of the characteristics of quantum dots on the laser parameters, a model consisting of laser-induced strain, surface diffusion, and Ostwald ripening is proposed for the mechanism underlying the formation of the Ge/Si quantum dots. The technique demonstrated could be applicable to other materials besides Ge/Si.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd