Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4953059
1.
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Sci 294, 14881495 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
C. A. Ross, “Patterned magnetic recording media,” Annu. Rev. Mater. Res 31, 203235 (2001).
http://dx.doi.org/10.1146/annurev.matsci.31.1.203
3.
J. Han, J. Hu, Y. Ouyang, S. X. Wang, and J. He, “Hysteretic Modeling of Output Characteristics of Giant Magnetoresistive Current Sensors,” IEEE T. Ind. Electron 62, 516524 (2015).
http://dx.doi.org/10.1109/TIE.2014.2326989
4.
T. Seki, H. Yako, T. Yamamoto, T. Kubota, Y. Sakuraba, and M. Ueda, “Spin torque-induced magnetization dynamics in giant magnetoresistance devices with Heusler alloy layers,” J. Phys. D: Appl. Phys 48, 164010 (2015).
http://dx.doi.org/10.1088/0022-3727/48/16/164010
5.
J. M. Daughton, A. V. Pohm, R. T. Fayfield, and C. H. Smith, “Applications of spin dependent transport materials,” J. Phys. D: Appl. Phys 32, 169 (1999).
http://dx.doi.org/10.1088/0022-3727/32/22/201
6.
N. Overend, A. Nogaret, B. L. Gallagher, and P. C. Main, “Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/semiconductor devices,” Appl. Phys. Lett 72, 17241726 (1998).
http://dx.doi.org/10.1063/1.121164
7.
N. Overend, A. Nogaret, B. L. Gallagher, P. C. Maina, R. Wirtzb, R. Newburyb, M.A. Howsonc, and S.P. Beaumontd, “Giant magnetoresistance and possible miniband effects in periodic magnetic fields,” Physica B 249, 326329 (1998).
http://dx.doi.org/10.1016/S0921-4526(98)00124-0
8.
K. W. Edmonds, B. L. Gallagher, P. C. Main, A. Nogareta, M. Heninia, C. H. Marrowsb, and D. S. Macintyrec, “Magnetoresistance oscillations due to internal Landau band structure of a two-dimensional electron system in a periodic magnetic field,” Phys. Rev. B 64, 041303 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.041303
9.
F. Zhai, Y. Guo, and B. L. Gu, “Giant magnetoresistance effect in a magnetic-electric barrier structure,” Phys. Rev. B 66, 125305 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.125305
10.
Y. H. Kong, M. W. Lu, W. H. Tang, C. S. Li, and G. L. Zhang, “Giant magnetoresistance effect in hybrid ferromagnetic/semiconductor nanosystems,” Solid State Commun 142, 143147 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.02.005
11.
M. W. Lu and G. J. Yang, “Magnetoresistance effect in a both magnetically andelectrically modulated nanostructure,” Phys. Lett. A 362, 489493 (2007).
http://dx.doi.org/10.1016/j.physleta.2006.10.058
12.
X. D. Yang, R. Z. Wang, Y. Guo, Y. Wei, D. B. Yu, B. Wang, and H. Yan, “Giant magnetoresistance effect of two-dimensional electron gas systems in a periodically modulated magnetic field,” Phys. Rev. B 70, 115303 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115303
13.
X. W. Zhang, S. Y. Mou, and B. Dai, “Transport properties of two-dimensional electrons through multiple magnetic barriers,” J. Appl. Phys 114, 023706 (2013).
http://dx.doi.org/10.1063/1.4813493
14.
A. Nogaret, “Electron dynamics in inhomogeneous magnetic fields,” J. Phys: Condens. Matter 22, 253201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/25/253201
15.
R. Engel-Herbert and T. Hesjedal, “Calculation of the magnetic stray field of a uniaxial magnetic domain,” J. Appl. Phys 97, 074504 (2005).
http://dx.doi.org/10.1063/1.1883308
16.
B. Dai, X. X. Liu, Y. Lei, and A. Nogaret, “Magnetoresistance of Electrons Channelled by Microscopic Magnetic Field Modulation,” Chin. Phys. Lett 26, 037202 (2009).
http://dx.doi.org/10.1088/0256-307X/26/3/037202
17.
A. G. Pogosov, M. V. Budantsev, E. Y. Zhdanov, D. A. Pokhabov, A. K. Bakarov, and A. I. Toropov, “Electron transport in suspended semiconductor structures with two-dimensional electron gas,” Appl. Phys. Lett 100, 181902 (2012).
http://dx.doi.org/10.1063/1.4709485
18.
X. D. Yang, R. Z. Wang, Y. Guo, W. Yang, D. B. Yu, B. Wang, and H. Yan, “Giant magnetoresistance effect of two-dimensional electron gas systems in a periodically modulated magnetic field,” Phys. Rev. B 70, 115303 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115303
19.
M. W. Lu and G. J. Yang, “Magnetoresistance effect in a hybrid ferromagnetic/semiconductor nanostructure,” Solid State Commun 141, 248251 (2007).
http://dx.doi.org/10.1016/j.ssc.2006.11.003
20.
G. Papp and S. Borza, “Giant magnetoresistance in a two-dimensional electron gas modulated by periodically repeated magnetic barriers,” Solid State Commun 150, 20232027 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.08.013
21.
G. Papp and F.M. Peeters, “Giant magnetoresistance in a two-dimensional electron gas modulated by magnetic barriers,” J. Phys.: Condens. Matter 16, 82758284 (2004).
http://dx.doi.org/10.1088/0953-8984/16/46/014
22.
G. Papp and F. M. Peeters, “Magneto conductance for tunnelling through double magnetic barriers,” Physica E 25, 339346 (2005).
http://dx.doi.org/10.1016/j.physe.2004.06.055
23.
G. Papp and F. M. Peeters, “Tunable giant magnetoresistance with magnetic barriers,” J. Appl. Phys 100, 043707 (2006).
http://dx.doi.org/10.1063/1.2266301
24.
M. W. Lu, X. L. Cao, X. H. Huang, Y. Q. Jiang, and S. P. Yang, “Controllable giant magnetoresistance effect by the δ-doping in a magnetically confined semiconductor heterostructure,” Appl. Surf. Sci 360, 989993 (2016).
http://dx.doi.org/10.1016/j.apsusc.2015.11.101
25.
L. Sun, C. Fang, and Y. Guo, “Transport properties of electrons in fractal magnetic-barrier structures,” J. Appl. Phys 108, 063715 (2010).
http://dx.doi.org/10.1063/1.3488647
26.
H. Xu, L. Wang, H. Wang, and S. Zhang, “Magnetic control spin-polarization reversal in a hybrid ferromagnet/semiconductor spin filter,” J. Magn. Magn. Mater 351, 8791 (2014).
http://dx.doi.org/10.1016/j.jmmm.2013.09.047
27.
W. Y. Ma, G. L. Zhang, S. Y. Chen, Y. Q. Jiang, and S. Li, “Manipulating spin spatial splitter by δ-doping in hybrid magnetic–electric-barrier nanostructure,” Phys. Lett. A 378, 16421646 (2014).
http://dx.doi.org/10.1016/j.physleta.2014.04.016
28.
M. W. Lu, X. L. Cao, X. H. Huang, Y. Q. Jiang, S. Li, and S. P. Yang, “Tunable spin spatial splitter based on a δ-doped realistic magnetic-barrier nanostructure,” Superlattices Microstruct 77, 232239 (2015).
http://dx.doi.org/10.1016/j.spmi.2014.11.019
29.
X. H. Deng, J. T. Liu, J. R. Yuan, Q. H. Liao, and N. H. Liu, “A new transfer matrix method to calculate the optical absorption of graphene at any position in stratified media,” Europhys. Lett 109, 27002 (2015).
http://dx.doi.org/10.1209/0295-5075/109/27002
30.
J. Q. You, L. Zhang, and G. Pk, “Electronic transport in nanostructures consisting of magnetic barriers,” Phys. Rev. B: Condens 52, 1724317247 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.17243
31.
Y. X. Ping and Z. Cheng, “Transport Properties of Two-Dimensional Electron Gases in Antiparallel Magnetic-Electric Barrier Structures,” Commun. Theor. Phys 46, 348 (2006).
http://dx.doi.org/10.1088/0253-6102/46/2/033
32.
Y. H. Kong, G. L. Zhang, and S. Y. Chen, “Manipulating Transmission of a Two-Dimensional Electron Gas Modulated by Ferromagnetic and Schottky Metal Stripes,” MAPAN-J. Metrol. Soc. I 27, 165168 (2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4953059
Loading
/content/aip/journal/adva/6/5/10.1063/1.4953059
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4953059
2016-05-25
2016-09-30

Abstract

We study theoretically the giant magnetoresistance () effect of 2-dimensional electron system (2DES) by the transfer matrix method. To produce the inhomogeneous magnetic field, two magnetic strips are pre-deposited on the surface of 2DES. In our work, we fix the magnetization in one magnetic strip and adjust the tilting angle of magnetization in the other. The result shows that the electronic transmission and conductance vary significantly for different . The minimum conductance can be obtained at = which corresponds to the magnetization anti-parallel alignment. The magnetoresistance ratio () calculation also indicates we would get the maximum in that case. Furthermore, we consider the magnetization dependence of in this work. When increases, peaks get higher and broader and more numbers of peaks can be observed. These results offer an alternative to get a tunable device which can be controlled by adjusting the magnetization and the magnetized angle .

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4953059.html;jsessionid=iXagW0H3_0CLTWBR2dTI901T.x-aip-live-06?itemId=/content/aip/journal/adva/6/5/10.1063/1.4953059&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4953059&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4953059'
Right1,Right2,Right3,