Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4953060
1.
R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.15812
2.
R. Skomski, J. Appl. Phys. 76, 7059 (1994).
http://dx.doi.org/10.1063/1.358027
3.
E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3560 (1991).
http://dx.doi.org/10.1109/20.102931
4.
A. Y. Dobin and H. J. Richter, J. Appl. Phys. 101, 09K108 (2007).
http://dx.doi.org/10.1063/1.2714271
5.
D. Suess, J. Lee, J. Fidler, and T. Schrefl, J. Magn. Magn. Mater. 321, 545 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.06.041
6.
J. G. Zhu, X. Zhu, and Y. Tang, IEEE Trans. Magn. 44, 125 (2008).
http://dx.doi.org/10.1109/TMAG.2007.911031
7.
R. H. Victora and X. Shen, IEEE Trans. Magn. 41, 537 (2005).
http://dx.doi.org/10.1109/TMAG.2004.838075
8.
D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000).
http://dx.doi.org/10.1109/20.824418
9.
N. H. Duc, D. T. Huong Giang, and N. Chau, J. Magn. Magn. Mater. 290-291, 800 (2005).
http://dx.doi.org/10.1016/j.jmmm.2004.11.368
10.
R. Pellicelli and M. Solzi, J. Phys. D: Appl. Phys. 49, 045003 (2016).
http://dx.doi.org/10.1088/0022-3727/49/4/045003
11.
C. S. Bhatia, A. A. Polycarpou, and A. K. Menon, American Society of Mechanical Engineers (1999).
12.
T. Leineweber and H. Kronmüller, J. Magn. Magn. Mater. 176, 145 (1997).
http://dx.doi.org/10.1016/S0304-8853(97)00601-X
13.
G. Asti, M. Solzi, M. Ghidini, and F. M. Neri, Phys. Rev. B 69, 174401 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.174401
14.
G. H. Guo, G. F. Zhang, S. Y. Song, D. W. Wang, G. J. Bowden, and P. A. J. de Groot, Appl. Phys. Lett. 93, 102505 (2008).
http://dx.doi.org/10.1063/1.2972028
15.
G. H. Guo, G. F. Zhang, and X. G. Wang, Acta Phys. Sin. 60, 107503 (2011).
16.
G. H. Guo, G. F. Zhang, and X. G. Wang, J. Appl. Phys. 108, 043919 (2010).
http://dx.doi.org/10.1063/1.3478752
17.
X. G. Wang, G. H. Guo, and G. F. Zhang, J. Magn. Magn. Mater. 323, 1722 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.02.007
18.
T. Rasing, H. van den Berg, T. Gerrits, and J. Hohlfeld, Spin Dynamics in Confined Magnetic Structures II. 87, 216 (2003).
http://dx.doi.org/10.1007/3-540-46097-7_7
19.
I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, Nature 472, 205 (2011).
http://dx.doi.org/10.1038/nature09901
20.
B. Koopmans, J. J. M. Ruigrok, F. Dalla Longa, and W. J. M. de Jonge, Phys. Rev. Lett. 95, 267207 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.267207
21.
T. Seki, K. Utsumiya, Y. Nozaki, H. Imamura, and K. Takanashi, Nat. Communs. 4, 1726 (2013).
http://dx.doi.org/10.1038/ncomms2737
22.
T. Seki, W. Zhou, and K. Takanashi, J. Phys. D: Appl. Phys. 49, 075002 (2016).
http://dx.doi.org/10.1088/0022-3727/49/7/075002
23.
G. F. Zhang, Z. X. Li, X. G. Wang, Y. Z. Nie, and G. H. Guo, chin. phys. B 24, 097503 (2015).
http://dx.doi.org/10.1088/1674-1056/24/9/097503
24.
D. A. Garanin and H. Kachkachi, Phys. Rev. B 80, 014420 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014420
25.
F. Montoncello, L. Giovannini, F. Nizzoli, P. Vavassori, M. Grimsditch, T. Ono, G. Gubbiotti, S. Tacchi, and G. Carlotti, Phys. Rev. B 76, 024426 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024426
26.
A. L. Dantas, S. R. Vieira, N. S. Almeida, and A. S. Carriço, Phys. Rev. B 71, 014409 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014409
27.
G. F. Zhang, Z. X. Li, X. G. Wang, Y. Z. Nie, and G. H. Guo, J. Magn. Magn. Mater. 385, 402 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.03.043
28.
T. J. Fal, K. L. Livesey, and R. E. Camley, J. Appl. Phys. 109, 093911 (2011).
http://dx.doi.org/10.1063/1.3573497
29.
Y. Nozaki, M. Ohta, S. Taharazako, K. Tateishi, S. Yoshimura, and K. Matsuyama, Appl. Phys. Lett. 91, 082510 (2007).
http://dx.doi.org/10.1063/1.2775047
30.
S. Tacchi, T. N. A. Nguyen, G. Gubbiotti, M. Madami, G. Carlotti, M. G. Pini, A. Rettori, V. Fallahi, R. K. Dumas, and J. Åkerman, J. Phys. D: Appl. Phys. 47, 495004 (2014).
http://dx.doi.org/10.1088/0022-3727/47/49/495004
31.
A. Haldar, C. Banerjee, P. Laha, and A. Barman, J. Appl. Phys. 115, 133901 (2014).
http://dx.doi.org/10.1063/1.4870053
32.
L. R. Shelford, Y. Liu, U. Al-Jarah, P. A. J. de Groot, G. J. Bowden, R. C. C. Ward, and R. J. Hicken, Phys. Rev. Lett. 113, 067601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.067601
33.
E. E. Fullerton, J. S. Jiang, M. Grimsditch, C. H. Sowers, and S. D. Bader, Phys. Rev. B 58, 12193 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12193
34.
M. R. Fitzsimmons, S. Park, K. Dumesnil, C. Dufour, R. Pynn, J. A. Borchers, J. J. Rhyne, and P. Mangin, Phys. Rev. B 73, 134413 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134413
35.
K. Y. Guslienko, O. Chubykalo-Fesenko, O. Mryasov, R. Chantrell, and D. Weller, Phys. Rev. B 70, 104405 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.104405
36.
F. Canet, S. Mangin, C. Bellouard, and M. Piecuch, Eur. Phys. Lett. 52, 594 (2000).
http://dx.doi.org/10.1209/epl/i2000-00479-1
37.
F. Canet, C. Bellouard, S. Mangin, C. Chatelain, C. Senet, R. Siebrecht, V. Leiner, and M. Piecuch, Eur. Phys. J. B 34, 381 (2003).
http://dx.doi.org/10.1140/epjb/e2003-00235-y
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4953060
Loading
/content/aip/journal/adva/6/5/10.1063/1.4953060
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4953060
2016-05-25
2016-09-26

Abstract

The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4953060.html;jsessionid=49lz2GwCxHeHJdYhvgTYSAHb.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4953060&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4953060&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4953060'
Right1,Right2,Right3,