Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Y. Chang, S. Yang, J. Lee, L. Tao, W. S. Hwang, D. Jena, N. Lu, and D. Akinwande, ACS Nano 7, 5446 (2013).
G. H. Lee, Y. J. Yu, X. Cui, N. Petrone, C. H. Lee, M. S. Choi, D. Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, ACS Nano 7, 7931 (2013).
J. Yoon, W. Park, G. Y. Bae, Y. Kim, H. S. Jang, Y. Hyun, S. K. Lim, Y. H. Kahng, W. K. Hong, B. H. Lee, and H. C. Ko, Small 9, 3295 (2013).
R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H. C. Cheng, H. Wu, Y. Huang, and X. Duan, Nat. Commun. 5, 5143 (2014).
J. Pu, L. J. Li, and T. Takenobu, Phys. Chem. Chem. Phys. 16, 14996 (2014).
D. Akinwande, N. Petrone, and J. Hone, Nat. Commun. 5, 5678 (2015).
W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J. S. Kim, S. Sonde, L. Tao, N. Lu, and D. Akinwande, Nano Lett. 15, 1883 (2015).
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys Rev Lett 105, 136805 (2010).
L. Liu, S. B. Kumar, Y. Ouyang, and J. Guo, IEEE Trans. Electron Devices 58, 3042 (2011).
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, Adv. Mater. 24, 5832 (2012).
J. Kwon, Y. K. Hong, H. J. Kwon, Y. J. Park, B. Yoo, J. Kim, C. P. Grigoropoulos, M. S. Oh, and S. Kim, Nanotechnology 26, 035202 (2015).
X. Zou, J. Wang, C.-H. Chiu, Y. Wu, X. Xiao, C. Jiang, W.-W. Wu, L. Mai, T. Chen, J. Li, J. C. Ho, and L. Liao, Adv. Mater. 26, 6255 (2014).
H. Kwon, W. Choi, D. Lee, Y. Lee, J. Kwon, B. Yoo, C. P. Grigoropoulos, and S. Kim, Nano Res. 7, 1137 (2014).
Y. Du, L. Yang, J. Zhang, H. Liu, K. Majumdar, P. D. Kirsch, and P. D. Ye, IEEE Electron Device Lett. 35, 599 (2014).
A. Di Bartolomeo, Phys. Rep. 606, 1 (2016).
S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).
M. P. Taylor, D. W. Readey, M. F. A. M. Van Hest, C. W. Teplin, J. L. Alleman, M. S. Dabney, L. M. Gedvilas, B. M. Keyes, B. To, J. D. Perkins, and D. S. Ginley, Adv. Funct. Mater. 18, 3169 (2008).
W. L. Leong, Y. Ren, H. L. Seng, Z. Huang, S. Y. Chiam, and A. Dodabalapur, ACS Appl. Mater. Interfaces 7, 11099 (2015).
B. Lei, G. R. Li, and X. P. Gao, J. Mater. Chem. A 2, 3919 (2014).
S. Das, H. Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Nano Lett. 13, 2615 (2013).
S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, ACS Nano 8, 2880 (2014).
M. Fontana, T. Deppe, A. K. Boyd, M. Rinzan, A. Y. Liu, M. Paranjape, and P. Barbara, Sci. Rep. 3, 1634 (2013).
C. Gong, L. Colombo, R. M. Wallace, and K. Cho, Nano Lett. 14, 1714 (2014).
J. R. Chen, P. M. Odenthal, A. G. Swartz, G. C. Floyd, H. Wen, K. Y. Luo, and R. K. Kawakami, Nano Lett. 13, 3106 (2013).
H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, ACS Nano 8, 1031 (2014).
L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342, 614 (2013).
A. Allain, J. Kang, K. Banerjee, and A. Kis, Nat. Mater. 14, 1195 (2015).
S. L. Li, K. Tsukagoshi, E. Orgiu, and P. Samorì, Chem. Soc. Rev. 45, 118 (2016).
H. Schmidt, F. Giustiniano, and G. Eda, Chem. Soc. Rev. 44, 7715 (2015).

Data & Media loading...


Article metrics loading...



Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS) thin-film transistor (TFT), which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd