Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4953063
1.
F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, and H. Petersen, Phys. Rev. B 40, 5715 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.5715
2.
D. Mardare and G.I. Rusu, Mater. Sci. Eng. B 75, 68 (2000).
http://dx.doi.org/10.1016/S0921-5107(00)00387-1
3.
A.K. Hassan, N.B. Chaure, A.K. Ray, A.V. Nabok, and S. Habesch, J. Phys. D: Appl. Phys. 36, 1120 (2003).
http://dx.doi.org/10.1088/0022-3727/36/9/310
4.
J.K. Burdett, Acta Crystallogr. B 51, 547 (1995).
http://dx.doi.org/10.1107/S010876819401373X
5.
T. Kuratomi, K. Yamaguchi, M. Yamawaki, T. Bak, J. Nowotny, M. Rekas, and C.C. Sorell, Solid State Ionics 154–155, 223 (2002).
http://dx.doi.org/10.1016/S0167-2738(02)00436-8
6.
C. Sousa and F. Illas, Phys. Rev. B 50, 13974 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.13974
7.
R.R. Hasiguti and E. Yagi, Phys. Rev. B 49, 7251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.7251
8.
K.M. Glassford and J.R. Chelikowsky, J. Phys. Rev. B 45, 3874 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.3874
9.
D. Nishio-Hamane, M. Katagiri, K. Niwa, A. Sano-Furukawa, T. Okada, and T. Yagi, High. Pressure Res. 29, 379 (2009).
http://dx.doi.org/10.1080/08957950802665747
10.
M.A. Afifi, M.M. Abdel-Aziz, I.S. Yahia, M. Fadel, and L.A. Wahab, J. Alloys Comp. 455, 92 (2008).
http://dx.doi.org/10.1016/j.jallcom.2007.01.156
11.
S.V. Ovsyannikov, X. Wu, A.E. Karkin, V.V. Shchennikov, and G.M. Manthilake, Phys Rev. B 86, 024106 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.024106
12.
S.V. Ovsyannikov, X. Wu, G. Garbarino, M. Nunez-Regueiro, V.V. Shchennikov, J.A. Khmeleva, A.E. Karkin, N. Dubrovinskaia, and L. Dubrovinsky, Phys. Rev. B 88, 184106 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184106
13.
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, Computer Code WIEN2K (Vienna University of Technology, 2002), improved and updated Unix version of the original [P. Blaha, K. Schwarz, and P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990).
14.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
15.
P.B. Allen, in Quantum Theory of Real Materials, edited by J. R. Chelikowsky and S. G. Louie (Klüwer, Boston, 1996).
16.
H.Y. Lv, H.J. Liu, L. Pan, Y.W. Wen, X.J. Tan, J. Shi, and X.F. Tang, Appl. Phys. Lett 96, 142101 (2010).
http://dx.doi.org/10.1063/1.3372636
17.
L.L. Wang, L. Miao, Z.Y. Wang, W. Wei, R. Xiong, H.J. Liu, J. Shi, and X. F. Tang, J. Appl. Phys. 105, 013709 (2009).
http://dx.doi.org/10.1063/1.3056384
18.
C. Sevik and T. Çagın, Appl. Phys. Lett. 95, 112105 (2009).
http://dx.doi.org/10.1063/1.3222862
19.
B. Xu, C.G. Long, Y.S. Wang, and L. Yi, Chem. Phys. Lett. 529, 45 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.01.053
20.
B. Xu, Y.X. Wang, W.J. Zhao, and Y.L. Yan, J. Appl. Phys. 110, 013530 (2011).
http://dx.doi.org/10.1063/1.3609075
21.
G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).
http://dx.doi.org/10.1016/j.cpc.2006.03.007
22.
M.G. Holland, Phys. Rev. 132, 2461 (1963).
http://dx.doi.org/10.1103/PhysRev.132.2461
23.
A. Pfitzner and Z. Kristallogr. 209, 685 (1994).
24.
S.S. Stoyko, M. Khatun, and A. Mar, Inorg. Chem. 51, 9517 (2012).
http://dx.doi.org/10.1021/ic301311m
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4953063
Loading
/content/aip/journal/adva/6/5/10.1063/1.4953063
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4953063
2016-05-25
2016-10-01

Abstract

A lot of physical properties of ThS-type TiO have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30GP to 35GP, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease with increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4953063.html;jsessionid=OLaWI9-21FFRQdslOvNMfD2W.x-aip-live-03?itemId=/content/aip/journal/adva/6/5/10.1063/1.4953063&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4953063&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4953063'
Right1,Right2,Right3,