Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/5/10.1063/1.4953064
1.
A. Dai, A. Wan, C. Magee, Y. D. Zhang, S. Barlow, S. R. Marder, and A. Kahn, Org. Electron. 23, 151 (2015).
http://dx.doi.org/10.1016/j.orgel.2015.04.023
2.
S. T. Han, Y. Zhou, and V. A. L. Roy, Adv. Mater. 25, 5425 (2013).
http://dx.doi.org/10.1002/adma.201301361
3.
P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, and Y. Y. Noh, Chem. Mater. 31, 341 (2011).
http://dx.doi.org/10.1021/cm102006v
4.
D. Mao, M. A. Quevedo-Lopez, H. Stiegler, B. E. Gnade, and H. N. Alshareef, Org. Electron. 11, 925 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.02.012
5.
B. Kam, T. H. Ke, A. Chasin, M. Tyagi, C. Cristoferi, K. Tempelaars, A. J. J. M. van Breemen, K. Myny, S. Schols, and J. Genoe, IEEE Electr. Device L. 35, 539 (2014).
http://dx.doi.org/10.1109/LED.2014.2313029
6.
Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. Huang, Nature Mater. 10, 296 (2011).
http://dx.doi.org/10.1038/nmat2951
7.
J. L. Wang, B. L. Liu, X. L. Zhao, B. B. Tian, Y. H. Zou, S. Sun, H. Shen, J. L. Sun, X.J. Meng, and J. H. Chu, Appl. Phys. Lett. 104, 182907 (2014).
http://dx.doi.org/10.1063/1.4875907
8.
K. Asadi, D.M. De Leeuw, B. De Boer, and P.W. Blom, Nature Mater. 7, 547 (2008).
http://dx.doi.org/10.1038/nmat2207
9.
X. L. Zhang, W. Dong, Y. Liu, G. Xu, and H. S. Xu, J. Phys. D: Appl. Phys. 44, 435304 (2011).
http://dx.doi.org/10.1088/0022-3727/44/43/435304
10.
X. L. Zhang, X. L. Du, Y. Hou, Z. Y. , and H. S. Xu, Appl. Phys. Lett. 104, 103505 (2014).
http://dx.doi.org/10.1063/1.4868413
11.
I. Lazareva, Y. Koval, P. Müller, K. Müller, K. Henkel, and D. Schmeisser, J. Appl. Phys. 105, 054110 (2009).
http://dx.doi.org/10.1063/1.3088887
12.
D. Guo, F. Zeng, and B. Dkhil, J. Nanosci. Nanotechno. 2, 2086 (2014).
http://dx.doi.org/10.1166/jnn.2014.9272
13.
C. Lew and M. O. Thompson, J. Appl .Phys. 107, 104110 (2010).
http://dx.doi.org/10.1063/1.3427559
14.
S. Wu, M. Shao, Q. Burlingame, X. Chen, M. Lin, K. Xiao, and Q. M. Zhang, Appl. Phys. Lett. 102, 013301 (2013).
http://dx.doi.org/10.1063/1.4773186
15.
S. Wu, M. Lin, S. Lu, L. Zhu, and Q. M. Zhang, Appl. Phys. Lett. 99, 132901 (2011).
http://dx.doi.org/10.1063/1.3645009
16.
J. Takarada, H. Sato, and A. Furukawa, J. J. App. Phy. 54, 10NA17 (2015).
http://dx.doi.org/10.7567/JJAP.54.10NA17
17.
D. Zhao, I. Katsouras, M. Li, K. Asadi, J. Tsurumi, G. Glasser, J. Takeya, P.W. Blom, and D.M. de Leeuw, Sci Rep-UK. 4, 5075 (2014).
18.
W. J. Hu, D.-M. Juo, L. You, J. Wang, Y.-C. Chen, Y.-H. Chu, and T. Wu, Sci Rep-UK. 4, 4772 (2014).
19.
R. Gysel, I. Stolichnov, A. K. Tagantsev, N. Setter, and P. Mokrý, J. Appl. Phys. 103, 084120 (2008).
http://dx.doi.org/10.1063/1.2907990
20.
X. L. Zhang, H. S. Xu, and Y. N. Zhang, J. Phys. D: Appl. Phys. 44, 155501 (2011).
http://dx.doi.org/10.1088/0022-3727/44/15/155501
21.
X. L. Zhang, Y. Hou, Y. N. Zhang, Z. Y. Lv, G. Xu, and H. S. Xu, J. Appl. Phys. 112, 074111 (2012).
http://dx.doi.org/10.1063/1.4757936
22.
H. S. Xu, J. Zhong, X. Liu, J. Chen, and D. Shen, Appl. Phys. Lett. 90, 092903 (2007).
http://dx.doi.org/10.1063/1.2710477
23.
Y. Hou, Z.Y. , Y. Zhang, G. Xu, and H. S. Xu, Appl. Phys. Lett. 101, 183504 (2012).
http://dx.doi.org/10.1063/1.4766176
24.
Y. Hou, Z.Y. , T. S. Pu, Y. Zhang, G. Xu, and H. S. Xu, Appl. Phys. Lett. 102, 063507 (2013).
http://dx.doi.org/10.1063/1.4792689
25.
H. S. Xu, X. Liu, X. Fang, H. Xie, G. Li, X. J. Meng, J. L. Sun, and J. H. Chu, J. Appl. Phys. 105, 034107 (2009).
http://dx.doi.org/10.1063/1.3075897
26.
H. S. Xu, Y. Zhang, X. L. Zhang, and Y. Ma, Ferroelectrics 413, 46 (2011).
http://dx.doi.org/10.1080/00150193.2011.542702
27.
Y. Kim, H. Han, W. Lee, S. Baik, D. Hesse, and M. Alexe, Nano. Lett. 10, 1266 (2010).
http://dx.doi.org/10.1021/nl9038339
28.
H. Orihara, S. Hashimoto, and Y. Ishibashi, J. Phys. Soc. Jpn. 63, 1031 (1994).
http://dx.doi.org/10.1143/JPSJ.63.1031
29.
Y. Ishibashi and Y. Takagi, J. Phys. Soc. Jpn. 31, 506 (1971).
http://dx.doi.org/10.1143/JPSJ.31.506
30.
A. K. Tagantsev, I. Stolichnov, N. Setter, J.S. Cross, and M. Tsukada, Phys. Rev. B. 66, 214109 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.214109
31.
D. Mao, I. Mejia, H. Stiegler, B. Gnade, and M. Quevedo-Lopez, J. Appl. Phys. 108, 094102 (2010).
http://dx.doi.org/10.1063/1.3500428
32.
G. D. Zhu, J. Zhang, X. Luo, and X. Yan, Org. Electron. 10, 753 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.03.008
33.
Z. Zeng, G. Zhu, R. Liu, Q. M. Zhang, and X. Yan, Microelectron Eng. 85, 2187 (2008).
http://dx.doi.org/10.1016/j.mee.2008.04.032
34.
A. Higgins, S. K. Mohapatra, S. Barlow, S. R. Marder, and A. Kahn, Appl. Phys. Lett. 106, 163301 (2015).
http://dx.doi.org/10.1063/1.4918627
35.
D. Guo, I. Stolichnov, and N. Setter, J. Phys. Chem. B 115, 13455 (2011).
http://dx.doi.org/10.1021/jp2061442
36.
D. Guo and N. Setter, Macromolecules 46, 1883 (2013).
http://dx.doi.org/10.1021/ma302377q
37.
T. Furukawa, Adv. Colloid. Interface. 71, 183 (1997).
http://dx.doi.org/10.1016/S0001-8686(97)90017-8
38.
T. Furukawa, Phase Transitions: A Multinational Journal. 18, 143 (1989).
http://dx.doi.org/10.1080/01411598908206863
39.
Y. Takase, A. Odajima, and T. Wang, J. Appl. Phys. 60, 2920 (1986).
http://dx.doi.org/10.1063/1.337079
40.
R. Al-jishi and P. Taylor, Ferroelectrics 73, 343 (1987).
http://dx.doi.org/10.1080/00150198708227928
41.
J. Jo, H. Han, J.-G. Yoon, T. Song, S.-H. Kim, and T. Noh, Phys. Rev. Lett. 99, 267602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.267602
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/5/10.1063/1.4953064
Loading
/content/aip/journal/adva/6/5/10.1063/1.4953064
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/5/10.1063/1.4953064
2016-05-25
2016-09-30

Abstract

The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designed using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/5/1.4953064.html;jsessionid=YJLVIiuhZh7-bbyl4lwEYu9i.x-aip-live-02?itemId=/content/aip/journal/adva/6/5/10.1063/1.4953064&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/5/10.1063/1.4953064&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/5/10.1063/1.4953064'
Right1,Right2,Right3,