Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953327
1.
W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity (Springer, 2008).
2.
J. Tichy, J. Erhart, E. Kittinger, and J. Privrastka, Fundamentals of Piezoelectric Sensorics (Springer, 2010).
3.
Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagata, and M. Nakamura, Nature 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
4.
J. F. Li, K. Wang, B. P. Zhang, and L. M. Zhang, J. Am. Ceram. Soc. 89, 706 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2005.00743.x
5.
Z. Y. Shen, J. F. Li, K. Wang, S. Xu, W. Jiang, and Q. Deng, J. Am. Ceram. Soc. 93, 1378 (2010).
6.
J. S. Zhou, F. Z. Yao, K. Wang, Q. Li, X. M. Qi, F. Y. Zhu, and J. F. Li, J. Mater. Sci.-Mater. El. 26, 9329 (2015).
http://dx.doi.org/10.1007/s10854-015-3029-9
7.
H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, and J. Rödel, J. Eur Ceram. Soc. 35, 2501 (2015).
http://dx.doi.org/10.1016/j.jeurceramsoc.2015.03.012
8.
K. Tabuchi, H. Nagata, and T. Takenaka, J. Ceram. Soc. Jpn. 121, 623 (2013).
http://dx.doi.org/10.2109/jcersj2.121.623
9.
S. Someno, H. Nagata, and T. Takenaka, J. Ceram. Soc. Jpn. 122, 406 (2014).
http://dx.doi.org/10.2109/jcersj2.122.406
10.
G. Shirane, R. Newnham, and R. Pepinsky, Phys. Rev. 96, 581 (1954).
http://dx.doi.org/10.1103/PhysRev.96.581
11.
L. Egerton and D. M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).
http://dx.doi.org/10.1111/j.1151-2916.1959.tb12971.x
12.
R. E. Jaeger and L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962).
http://dx.doi.org/10.1111/j.1151-2916.1962.tb11127.x
13.
G. H. Haertling, J. Am. Ceram. Soc. 50, 329 (1967).
http://dx.doi.org/10.1111/j.1151-2916.1967.tb15121.x
14.
IEEE Standard on Piezoelectricity, Std., 1988.
15.
L. Tang and W. Cao, Appl. Phys. Lett. 106, 052902 (2015).
http://dx.doi.org/10.1063/1.4907412
16.
S. J. Rupitsch and R. Lerch, Appl. Phys. A-Mater. 97, 735 (2009).
http://dx.doi.org/10.1007/s00339-009-5438-1
17.
S. J. Rupitsch and J. Ilg, IEEE Trans. On Ultrason., Ferrolect., and Freq. Contr. 62, 1403 (2015).
http://dx.doi.org/10.1109/TUFFC.2015.006997
18.
K. Kakimoto, Y. Hayakawa, and I. Kagomiya, J. Am. Ceram. Soc. 93, 2423 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.03748.x
19.
Y. Kizaki, Y. Noguchi, and M. Miyayama, Appl. Phys. Lett. 89, 142910 (2006).
http://dx.doi.org/10.1063/1.2357859
20.
Y. Guo, K. Kakimoto, and H. Ohsato, Jpn. J. Appl. Phys. 43, 6662 (2004).
http://dx.doi.org/10.1143/JJAP.43.6662
21.
Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004).
http://dx.doi.org/10.1063/1.1813636
22.
K. Higashide, K. Kakimoto, and H. Ohsato, J. Eur Ceram. Soc. 27, 4107 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.103
23.
K. Hatano, A. Yamamoto, Y. Doshida, and Y. Mizuno, J. Ceram. Soc. Jpn. 123, 561 (2015).
http://dx.doi.org/10.2109/jcersj2.123.561
24.
R. E. Newnham, Properties of materials: Anisotropy, Symmetry, Structure (Oxford University Press, 2004).
25.
E. Li, Y Zhen, L. Zhang, and K. Wang, Ceram. Int. 34, 783 (2008).
http://dx.doi.org/10.1016/j.ceramint.2007.09.025
26.
B. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press Limited, New York, 1971).
27.
N. Ishizawa, J. Wang, T. Sakakura, Y. Inagaki, and K. Kakimoto, J. Solid State Chem. 183, 2731 (2010).
http://dx.doi.org/10.1016/j.jssc.2010.09.018
28.
T. Sakakura, J. Wang, N. Ishizawa, Y. Inagaki, and K. Kakimoto, IOP Conference Series: Mater. Sci. Eng. 18, 022006 (2011).
http://dx.doi.org/10.1088/1757-899X/18/2/022006
29.
J. Ilg, S. Rupitsch, and R. Lerch, IEEE Sens. J. 13, 2442 (2013).
http://dx.doi.org/10.1109/JSEN.2013.2256121
30.
K. Ogo, M. Weiss, S. J. Rupistch, R. Lerch, and K. Kakimoto, in Proceeding of 2015 IEEE International. Ultrasonics Symposium, Taipei, Taiwan, 21-24 October 2015, edited byP. C. Li (National Taiwan University, Taipei).
31.
B. Hansu, D. Damjanovic, and N. Setter, J. Eur Ceram. Soc. 26, 861 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.11.022
32.
R. Zuo, J. Rödel, R. Chen, and L. Li, J. Am. Ceram. Soc. 89, 2010 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2006.00991.x
33.
N. M. Gokhale, S. C. Sharma, and R. Lal, B. Mater. Sci. 11, 49 (1988).
http://dx.doi.org/10.1007/BF02744500
34.
D. Lin, K. W. Kwok, and H. L. W. Chan, J. Alloy Compd. 461, 273 (2008).
http://dx.doi.org/10.1016/j.jallcom.2007.06.128
35.
M. Kiyohara, K. I. Katou, and K. Nagata, J. Ceram. Soc. Jpn 103, 1233 (1995).
http://dx.doi.org/10.2109/jcersj.103.1233
36.
T. Tsurumi, Y. Kumano, N. Ohashi, T. Takenaka, and O. Fukunaga, Jpn. J. Appl. Phys. 36, 5970 (1997).
http://dx.doi.org/10.1143/JJAP.36.5970
37.
T. Tsurumi, T. Sasaki, H. Kakemoto, T. Harigai, and S. Wada, Jpn. J. Appl. Phys. 43, 7618 (2004).
http://dx.doi.org/10.1143/JJAP.43.7618
38.
D. Damjanovic and M. Demartin, J. Phys.: Condens. Matter 9, 4943 (1997).
http://dx.doi.org/10.1088/0953-8984/9/23/018
39.
P. M. Chaplya and G. P. Carman, J. Appl. Phys. 90, 5278 (2001).
http://dx.doi.org/10.1063/1.1410330
40.
D. Zhou, M. Kamlah, and D. Munz, J. Eur Ceram. Soc. 25, 425 (2005).
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.01.016
41.
K. G. Webber, E. Aulbach, T. Key, M. Marsilius, T. Granzow, and J. Rödel, Acta Mater. 57, 4614 (2009).
http://dx.doi.org/10.1016/j.actamat.2009.06.037
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953327
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953327
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953327
2016-06-03
2016-12-09

Abstract

Sodium potassium niobate (NKN) piezoceramics have been paid much attention as lead-free piezoelectric materials in high temperature devices because of their high Curie temperature. The temperature dependency of their material parameters, however, has not been determined in detail up to now. For this purpose, we exploit the so-called Inverse Method denoting a simulation-based characterization approach. Compared with other characterization methods, the Inverse Method requires only one sample shape of the piezoceramic material and has further decisive advantages. The identification of material parameters showed that NKN is mechanically softer in shear direction compared with lead zirconate titanate (PZT) at room temperature. The temperature dependency of the material parameters of NKN was evaluated in the temperature range from 30 °C to 150 °C. As a result, we figured out that dielectric constants and piezoelectric constants show a monotonous and isotropic increment with increasing temperature. On the other hand, elastic stiffness constant of NKN significantly decreased in contrast to other elastic stiffness constants. It could be revealed that the decrement of is associated with an orthorhombic-tetragonal phase transition. Furthermore, ratio of elastic compliance constants exhibited similar temperature dependent behavior to the ratio of piezoelectric constants / . It is suspected that mechanical softness in shear direction is one origin of the large piezoelectric shear mode of NKN. Our results show that NKN are suitable for high temperature devices, and that the Inverse Method should be a helpful approach to characterize material parameters under their practical operating conditions for NKN.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953327.html;jsessionid=g4ZF9UVtqxATAGk9togyQHMQ.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953327&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953327&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953327'
Right1,Right2,Right3,