Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953328
1.
J. R. Harris, J. Appl. Phys. 115 (2014).
2.
H. Naruse, H. Saito, M. Sakaki, and O. Yamamoto, IEEE Trans. Dielectr. Electr. Insul. 22, 597 (2015).
http://dx.doi.org/10.1109/TDEI.2014.004566
3.
R. A. Anderson, Appl. Phys. Lett. 24, 54 (1974).
http://dx.doi.org/10.1063/1.1655091
4.
H. C. Miller, Dielectrics & Electrical Insulation IEEE Transactions on 22, 3641 (2015).
http://dx.doi.org/10.1109/TDEI.2015.004702
5.
H. C. Miller, IEEE Trans. Electr. Insul. 28, 512 (1993).
http://dx.doi.org/10.1109/14.231534
6.
J. Z. Gleizer, Y. E. Krasik, and J. Leopold, J. Appl. Phys. 117 (2015).
http://dx.doi.org/10.1063/1.4913213
7.
L. Xu, M. Wang, F. Li, Z. Yang, and J. Deng, IEEE Trans. Plasma Sci. 43, 3546 (2015).
http://dx.doi.org/10.1109/TPS.2015.2423852
8.
Y. Nakano, H. Kojima, K. Tsuchiya, and N. Hayakawa, IEEE Trans. Dielectr. Electr. Insul. 22, 2390 (2015).
http://dx.doi.org/10.1109/TDEI.2015.004948
9.
Y. Nakano, H. Kojima, N. Hayakawa, K. Tsuchiya, and H. Okubo, IEEE Trans. Dielectr. Electr. Insul. 21, 403 (2014).
http://dx.doi.org/10.1109/TDEI.2013.004136
10.
G. J. Zhang, Z. Yan, Y. S. Liu, K. Yasuoka, and S. Ishii, Appl. Phys. Lett. 78, 625 (2001).
http://dx.doi.org/10.1063/1.1344573
11.
J. Y. Zhan, H. B. Mu, G. J. Zhang, X. Z. Huang, X. J. Shao, and J. B. Deng, Appl. Phys. Lett. 101, 041604 (2012).
http://dx.doi.org/10.1063/1.4738999
12.
G. Q. Su, Y. Lang, J. Y. Zhan, B. P. Song, G. J. Zhang, F. Li, and M. Wang, IEEE Trans. Plasma Sci. 42, 2576 (2014).
http://dx.doi.org/10.1109/TPS.2014.2312724
13.
T. Mizuno, Y. S. Liu, W. Shionoya, M. Okada, K. Yasuoka, S. Ishii, A. Yokoyama, and H. Miyata, IEEE Trans. Dielectr. Electr. Insul. 5, 903 (1999).
http://dx.doi.org/10.1109/94.740774
14.
C. Laurent, C. Mayoux, and S. Noel, J. Appl. Phys. 58, 4346 (1985).
http://dx.doi.org/10.1063/1.335523
15.
C. Laurent, G. Teyssedre, S. L. Roy, and F. Baudoin, IEEE Trans. Dielectr. Electr. Insul. 20, 357 (2013).
http://dx.doi.org/10.1109/TDEI.2013.6508737
16.
R. Latham, High Voltage Vacuum Insulation (Academic Press, New York, 1995), pp. 20162.
17.
Y. Gu, J. P. Romankiewicz, J. K. David, J. L. Lensch, and L. J. Lauhon, Nano Lett. 6, 948 (2006).
http://dx.doi.org/10.1021/nl052576y
18.
C. Laurent, F. Massines, and C. Mayoux, IEEE Trans. Dielectr. Electr. Insul. 4, 585 (1997).
http://dx.doi.org/10.1109/94.625646
19.
S. S. Bamji, A. T. Bulinski, and M. Abou-Dakka, IEEE Trans. Dielectr. Electr. Insul. 16, 1376 (2009).
http://dx.doi.org/10.1109/TDEI.2009.5293951
20.
J. Y. Zhan, H. B. Mu, X. Z. Huang, and G. J. Zhang, J. Appl. Phys. 113, 013301 (2013).
http://dx.doi.org/10.1063/1.4772965
21.
D. Lapraz, P. Iacconi, D. Daviller, and B. Guilhot, Phys. Status Solidi (a) 126, 521 (1991).
http://dx.doi.org/10.1002/pssa.2211260224
22.
B. M. Coaker, N. S. Xu, F. J. Jones, and R. V. Latham, J. Phys. D: Appl. Phys. 27, 1448 (1994).
http://dx.doi.org/10.1088/0022-3727/27/7/016
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953328
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953328
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953328
2016-06-01
2016-12-02

Abstract

The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953328.html;jsessionid=ucTvnxm8MyPFRNFCLHJKT_Xj.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953328&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953328&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953328'
Right1,Right2,Right3,