Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, Germany, 1995).
R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078-1081 (1997).
S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102-1106 (1997).
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668-677 (2003).
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578-1586 (2008).
Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, “Plasmon resonance of finite one-dimensional Au nanoparticle chains,” Nano Lett. 4, 1067-1071 (2004).
Z. Zhang, A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Carbini, and P. J. Schuck, “Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter,” Nano Lett. 9, 4505-4509 (2009).
P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153-164 (2010).
K. Parshant and M. A. El-Sayed, “Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing,” Nano Lett. 8, 4347-4352 (2008).
P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7, 2080-2088 (2007).
J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212-1218 (2008).
H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering form individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826-1828 (2002).
A. Ahmadivand, M. Karabiyik, and N. Pala, “Fano-like resonances in split concentric nanoshell dimers in designing negative-index metamaterials for biological-chemical sensing and spectroscopic purposes,” Appl. Spectrosc. 69, 563-573 (2015).
S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett. 10, 2655-2660 (2010).
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon resonance of complex nanostructures,” Science 302, 419-422 (2003).
P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and extinction coupling model,” J. Phys. Chem. B 110, 18243-18253 (2006).
T. J. Antosiewicz and S. Peter Apell, “Optical enhancement of plasmonic activity of catalytic metal nanoparticles,” RSC Adv. 5, 6378-6384 (2015).
L. S. Slaughter, Y. Wu, B. A. Willingham, P. Nordlander, and S. Link, “Effect of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers,” ACS Nano 4, 4657-4666 (2010).
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonances in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707-715 (2010).
K. C. Woo, L. Shao, H. Chen, Y. Liang, J. Wang, and H. –Q. Lin, “Universal scaling and Fano resonance in the plasmon coupling between gold nanorods,” ACS Nano 5, 5976-5986 (2011).
Y, -I. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573-4588 (1995).
P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J. García-Vidal, “Ab ignition nanoplasmonics: The impact of atomic structure,” Phys. Rev. B 90, 161407(R) (2014).
B. Willinghaam, D. W. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93, 209-216 (2008).
D. E. Gomez, Z. Q. Teo, M. Altissimo, T. J. Davis, S. Earl, and A. Roberts, “The dark side of plasmonics,” Nano Lett. 13, 3722-3728 (2013).
G. Fletcher, M. D. Arnold, T. Pedersen, V. J. Keast, and M. B. Cortie, “Multipolar and dark-mode plasmon resonances on drilled silver nano-triangles,” Opt. Express 23, 18002-18013 (2015).
M. A. Taubenblatt and T. K. Tran, “Calculating of light scattering from particles and structures on a surface by the coupled-dipole method,” J. Opt. Soc. Am. A 10, 912-919 (1993).
B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994).
C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Germany, Berlin, 1983).
A. J. Logsdail, Computational characterization of gold nanocluster structures (Springer, Switzerland, 2013).
C. Radloff and N. J. Halas, “Plasmonic properties of concentric nanoshells,” Nano Lett. 4, 1323-1327 (2004).
O. Pena-Rodriguez and U. Pal, “Geometrical tunability of linear optical response of silica-gold double concentric nanoshells,” J. Phys. Chem. C 114, 4414-4417 (2010).
A. Ahmadivand and N. Pala, “Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka,” Plasmonics 10, 809-817 (2015).
E. D. Palik, Handbook of optical constants of solids, 2nd ed. (Academic Press, San Diego, 1991).
R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824-1832 (1999).
A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides,” Opt. Commun. 310, 1-14 (2014).
G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogenous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).

Data & Media loading...


Article metrics loading...



Here, we examine the electromagnetic (EM) energy coupling and hybridization of plasmon resonances between closely spaced concentric nanoshells known as “nanomatryoshka” (NM) units in symmetric and antisymmetric compositions using the Finite Difference Time Domain (FDTD) analysis. Utilizing plasmon hybridization model, we calculated the energy level diagrams and verified that, in the symmetric dimer (in-phase mode in a homodimer), plasmonic bonding modes are dominant and tunable within the considered bandwidth. In contrast, in the antisymmetric dimer (out-of-phase mode in a heterodimer), due to the lack of the geometrical symmetry, new antibonding modes appear in the extinction profile, and this condition gives rise to repeal of dipolar field coupling. We also studied the extinction spectra and positions of the antibonding and bonding modes excited due to the energy coupling between silver and gold NM units in a heterodimer structure. Our analysis suggest abnormal shifts in the higher energy modes. We propose a method to analyze the behavior of multilayer concentric nanoshell particles in an antisymmetric orientation employing full dielectric function calculations and the Drude model based on interband transitions in metallic components. This study provides a method to predict the behavior of the higher energy plasmon resonant modes in entirely antisymmetric structures such as compositional heterodimers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd