Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953396
1.
M. Weiler, M. Althammer, F. D. Czeschka, H. Huebl, M. S. Wagner, M. Opel, I. M. Imort, G. Reiss, A. Thomas, R. Gross, and S. T. Goennenwein, Phys. Rev. Lett. 108, 106602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.106602
2.
S. Y. Huang, X. Fan, D. Qu, Y. P. Chen, W. G. Wang, J. Wu, T. Y. Chen, J. Q. Xiao, and C. L. Chien, Phys. Rev. Lett. 109, 107204 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.107204
3.
H. Nakayama, M. Althammer, Y. T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprags, M. Opel, S. Takahashi, R. Gross, G. E. Bauer, S. T. Goennenwein, and E. Saitoh, Phys. Rev. Lett. 110, 206601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.206601
4.
M. Althammer, S. Meyer, H. Nakayama, M. Schreier, S. Altmannshofer, M. Weiler, H. Huebl, S. Geprägs, M. Opel, R. Gross, D. Meier, C. Klewe, T. Kuschel, J.-M. Schmalhorst, G. Reiss, L. Shen, A. Gupta, Y.-T. Chen, G. E. W. Bauer, E. Saitoh, and S. T. B. Goennenwein, Phys. Rev. B 87, 224401 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.224401
5.
C. Hahn, G. de Loubens, O. Klein, M. Viret, V. V. Naletov, and J. Ben Youssef, Phys. Rev. B 87, 174417 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.174417
6.
N. Vlietstra, J. Shan, V. Castel, B. J. van Wees, and J. Ben Youssef, Phys. Rev. B 87, 184421 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.184421
7.
N. Vlietstra, J. Shan, V. Castel, J. Ben Youssef, G. E. W. Bauer, and B. J. van Wees, Appl. Phys. Lett. 103, 032401 (2013).
http://dx.doi.org/10.1063/1.4813760
8.
S. Meyer, M. Althammer, S. Geprägs, M. Opel, R. Gross, and S. T. B. Goennenwein, Appl. Phys. Lett. 104, 242411 (2014).
http://dx.doi.org/10.1063/1.4885086
9.
T. Lin, C. Tang, H. M. Alyahayaei, and J. Shi, Phys. Rev. Lett. 113, 037203 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.037203
10.
S. R. Marmion, M. Ali, M. McLaren, D. A. Williams, and B. J. Hickey, Phys. Rev. B 89, 220404(R) (2014).
http://dx.doi.org/10.1103/PhysRevB.89.220404
11.
Y. Yang, B. Wu, K. Yao, S. Shannigrahi, B. Zong, and Y. Wu, J. Appl. Phys. 115, 17C509 (2014).
http://dx.doi.org/10.1063/1.4863486
12.
J. H. Han, Y. Y. Wang, Q. H. Yang, G. Y. Wang, F. Pan, and C. Song, Phys. Status Solidi RRL 9, 371 (2015).
http://dx.doi.org/10.1002/pssr.201510088
13.
M. Isasa, A. Bedoya-Pinto, S. Vélez, F. Golmar, F. Sánchez, L. E. Hueso, J. Fontcuberta, and F. Casanova, Appl. Phys. Lett. 105, 142402 (2014).
http://dx.doi.org/10.1063/1.4897544
14.
Z. Ding, B. L. Chen, J. H. Liang, J. Zhu, J. X. Li, and Y. Z. Wu, Phys. Rev. B 90, 134424 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134424
15.
T. Shang, Q. F. Zhan, H. L. Yang, Z. H. Zuo, Y. L. Xie, Y. Zhang, L. P. Liu, B. M. Wang, Y. H. Wu, S. Zhang, and R.-W. Li, Phys. Rev. B 92, 165114 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.165114
16.
C. O. Avci, K. Garello, A. Ghosh, M. Gabureac, S. F. Alvarado, and P. Gambardella, Nat. Phys. 11, 570 (2015).
http://dx.doi.org/10.1038/nphys3356
17.
C. O. Avci, K. Garello, J. Mendil, A. Ghosh, N. Blasakis, M. Gabureac, M. Trassin, M. Fiebig, and P. Gambardella, Appl. Phys. Lett. 107, 192405 (2015).
http://dx.doi.org/10.1063/1.4935497
18.
J. Liu, T. Ohkubo, S. Mitani, K. Hono, and M. Hayashi, Appl. Phys. Lett. 107, 232408 (2015).
http://dx.doi.org/10.1063/1.4937452
19.
J. Kim, P. Sheng, S. Takahashi, S. Mitani, and M. Hayashi, Phys. Rev. Lett. 116, 097201 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.097201
20.
S. Cho, S. H. Baek, K. D. Lee, Y. Jo, and B. G. Park, Sci. Rep. 5, 14668 (2015).
http://dx.doi.org/10.1038/srep14668
21.
Y. M. Lu, J. W. Cai, S. Y. Huang, D. Qu, B. F. Miao, and C. L. Chien, Phys. Rev. B 87, 220409(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.87.220409
22.
T. Shang, Q. F. Zhan, L. Ma, H. L. Yang, Z. H. Zuo, Y. L. Xie, H. H. Li, L. P. Liu, B. M. Wang, Y. H. Wu, S. Zhang, and R. W. Li, Sci. Rep. 5, 17734 (2015).
http://dx.doi.org/10.1038/srep17734
23.
Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. B. Goennenwein, E. Saitoh, and G. E. W. Bauer, Phys. Rev. B 87, 144411 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.144411
24.
S. Velez, V. N. Golovach, A. Bedoya-Pinto, M. Isasa, E. Sagasta, M. Abadia, C. Rogero, L. E. Hueso, F. S. Bergeret, and F. Casanova, Phys. Rev. Lett. 116, 016603 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.016603
25.
S. S.-L. Zhang, G. Vignale, and S. Zhang, Phys. Rev. B 92, 024412 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.024412
26.
J. H. Han, C. Song, F. Li, Y. Y. Wang, G. Y. Wang, Q. H. Yang, and F. Pan, Phys. Rev. B 90, 144431 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.144431
27.
Y. Yang, Y. Xu, X. Zhang, Y. Wang, S. Zhang, R.-W. Li, M. S. Mirshekarloo, K. Yao, and Y. Wu, Phys. Rev. B 93, 094402 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.094402
28.
Y. T. Chen, S. Takahashi, H. Nakayama, M. Althammer, S. T. Goennenwein, E. Saitoh, and G. E. Bauer, J. Phys.: Condens. Matter 28, 103004 (2016).
http://dx.doi.org/10.1088/0953-8984/28/10/103004
29.
W. Zhang, M. B. Jungfleisch, W. Jiang, J. E. Pearson, A. Hoffmann, F. Freimuth, and Y. Mokrousov, Phys. Rev. Lett. 113, 196602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.196602
30.
C. Du, H. Wang, F. Yang, and P. C. Hammel, Phys. Rev. B 90, 140407(R) (2014).
http://dx.doi.org/10.1103/PhysRevB.90.140407
31.
C.-F. Pai, Y. Ou, L. H. Vilela-Leão, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 92, 064426 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.064426
32.
T. Nan, S. Emori, C. T. Boone, X. Wang, T. M. Oxholm, J. G. Jones, B. M. Howe, G. J. Brown, and N. X. Sun, Phys. Rev. B 91, 214416 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.214416
33.
W. Zhang, W. Han, X. Jiang, S.-H. Yang, and S. S. P. Parkin, Nat. Phys. 11, 496 (2015).
http://dx.doi.org/10.1038/nphys3304
34.
P. Merodio, A. Ghosh, C. Lemonias, E. Gautier, U. Ebels, M. Chshiev, H. Béa, V. Baltz, and W. E. Bailey, Appl. Phys. Lett. 104, 032406 (2014).
http://dx.doi.org/10.1063/1.4862971
35.
D. Paraskevopoulos, R. Meservey, and P. M. Tedrow, Phys. Rev. B 16, 4907 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.4907
36.
A. T. Hindmarch, C. H. Marrows, and B. J. Hickey, Phys. Rev. B 72, 100401(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.100401
37.
R. J. Soulen, Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).
http://dx.doi.org/10.1126/science.282.5386.85
38.
J. Bass and W. P. Pratt, J. Phys.: Condens. Matter 19, 183201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/18/183201
39.
J. S. Moodera and G. Mathon, J. Magn. Magn. Mater. 200, 248 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00515-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953396
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953396
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953396
2016-06-02
2016-12-03

Abstract

We investigated spin Hall magnetoresistance in FeMn/Pt bilayers, which was found to be one order of magnitude larger than that of heavy metal and insulating ferromagnet or antiferromagnet bilayer systems, and comparable to that of NiFe/Pt bilayers. The spin Hall magnetoresistance shows a non-monotonic dependence on the thicknesses of both FeMn and Pt. The former can be accounted for by the thickness dependence of net magnetization in FeMn thin films, whereas the latter is mainly due to spin accumulation and diffusion in Pt. Through analysis of the Pt thickness dependence, the spin Hall angle, spin diffusion length of Pt and the real part of spin mixing conductance were determined to be 0.2, 1.1 nm, and 5.5 × 1014 Ω−1m−2, respectively. The results corroborate the spin orbit torque effect observed in this system recently.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953396.html;jsessionid=gs3nlHmtZ3J-Sp4QFoSWggYN.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953396&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953396&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953396'
Right1,Right2,Right3,