Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
W. S. Yang et al., “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science (80-. ) 348, 12341237 (2015).
G. Xing et al., “Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3,” Science 342, 3447 (2013).
S. D. Stranks et al., “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science 342, 3414 (2013).
R. Sheng et al., “Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapour-Assisted Deposition,” J. Phys. Chem. C 119, 150127132618007 (2015).
H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead Halide Perovskite: New Horizons in Solar Cell Research,” J. Phys. Chem. C 118, 56155625 (2014).
J. Burschka et al., “Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells,” J. Am. Chem. Soc. 133, 180425 (2011).
D. Bi et al., “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures,” RSC Adv. 3, 18762 (2013).
D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, “Effect of Different Hole Transport Materials on Recombination in CH 3 NH 3 PbI 3 Perovskite-Sensitized Mesoscopic Solar Cells,” J. Phys. Chem. Lett. 4, 15321536 (2013).
A. Mei et al., “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science (80-. ) 345, 295298 (2014).
S. Ye et al., “CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%,” Nano Lett. 150504172654007 (2015), doi:10.1021/acs.nanolett.5b00116.
H.-S. Ko, J.-W. Lee, and N.-G. Park, “15.76% Efficiency Perovskite Solar Cell Prepared under High Relative Humidity: Importance of PbI2 Morphology in Two-Step Deposition of CH3NH3PbI3,” J. Mater. Chem. A 3, 88088815 (2015).
P. V. Kamat, “Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics,” J. Phys. Chem. Lett. 4, 908918 (2013).
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (11),” Meet. Abstr. MA2008-02, 27 (2008).
M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 4559 (2005).
C. Magne, T. Moehl, M. Urien, M. Grätzel, and T. Pauporté, “Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells,” J. Mater. Chem. A 1, 20792088 (2013).
K. Mahmood, B. S Swain, and A. Amassian, “Double-layered ZnO nanostructures for efficient perovskite solar cells,” Nanoscale 6, 146748 (2014).
E. Kymakis, E. Stratakis, M. M. Stylianakis, E. Koudoumas, and C. Fotakis, “Spin coated graphene films as the transparent electrode in organic photovoltaic devices,” Thin Solid Films 520, 12381241 (2011).
G. Eda et al., “Transparent and conducting electrodes for organic electronics from reduced graphene oxide,” Appl. Phys. Lett. 92, 233305 (2008).
M. Khenfouch, M. Baïtoul, and M. Maaza, “White photoluminescence from a grown ZnO nanorods/graphene hybrid nanostructure,” Opt. Mater. (Amst) 34, 13201326 (2012).
C. Zhu et al., “One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets,” Chem. Commun. (Camb) 46, 714850 (2010).
X. Li et al., “Synthesis of 3D Hierarchical Fe 3 O 4 /Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery,” J. Phys. Chem. C 115, 2156721573 (2011).
J. O. Hwang et al., “Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission,” J. Mater. Chem. 21, 34323437 (2011).
Z. Chen, N. Zhang, and Y.-J. Xu, “Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion,” CrystEngComm 15, 3022 (2013).
G. Williams and P. V. Kamat, “Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide,” Langmuir 25, 1386973 (2009).
J. T.-W. Wang et al., “Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells,” Nano Lett. 14, 72430 (2014).
G. S. Han et al., “Reduced Graphene Oxide/mesoporous TiO2 Nanocomposite based Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 7, 151007124925005 (2015).
X. Dong, H. Hu, B. Lin, J. Ding, and N. Yuan, “The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures,” Chem. Commun. (Camb) 50, 144058 (2014).
J. Dong et al., “Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification,” Chem. Commun. (Camb) 50, 133814 (2014).
X. Xu et al., “Highly efficient planar perovskite solar cells with a TiO 2 /ZnO electron transport bilayer,” J. Mater. Chem. A 3, 1928819293 (2015).
S. Salam, M. Islam, and A. Akram, “Sol–gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells,” Thin Solid Films 529, 242247 (2013).
W. H., Jr. and R. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. (1958).
A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of Graphite Oxide Revisited ∥,” J. Phys. Chem. B 102, 44774482 (1998).
C. Zhang et al., “Facile synthesis and strongly microstructure-dependent electrochemical properties of graphene/manganese dioxide composites for supercapacitors,” Nanoscale Res. Lett. 9, 490 (2014).
D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nat. Nanotechnol. 3, 1015 (2008).
A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, “Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials,” J. Phys. Chem. C 111, 75657569 (2007).
X. Yang, J. Zhu, L. Qiu, and D. Li, “Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors,” Adv. Mater. 23, 28338 (2011).
Y. Wang et al., “Preventing Graphene Sheets from Restacking for High-Capacitance Performance,” J. Phys. Chem. C 115, 2319223197 (2011).
1958 Van Der Pauw (Philips Res Rep) a Method of Measuring Specific Resistivity and Hall Effect of Discs of Arbitrary Shape.
J. Burschka et al., “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature 499, 3169 (2013).
D. Liu, M. K. Gangishetty, and T. L. Kelly, “Effect of CH 3 NH 3 PbI 3 thickness on device efficiency in planar heterojunction perovskite solar cells,” J. Mater. Chem. A 2, 1987319881 (2014).
Q. Chen et al., “Planar heterojunction perovskite solar cells via vapor-assisted solution process,” J. Am. Chem. Soc. 136, 6225 (2014).
J. You et al., “Moisture assisted perovskite film growth for high performance solar cells,” Appl. Phys. Lett. 105, 183902 (2014).
H. Zhou et al., “Interface engineering of highly efficient perovskite solar cells,” Science (80-. ) 345, 542546 (2014).
J.-Y. Jeng et al., “CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells,” Adv. Mater. 25, 372732 (2013).
H.-B. Kim et al., “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale 6, 667983 (2014).
O. Malinkiewicz et al., “Perovskite solar cells employing organic charge-transport layers,” Nat. Photonics 8, 128132 (2013).
L. Bertoluzzi, P. P. Boix, I. Mora-Sero, and J. Bisquert, “Theory of Impedance Spectroscopy of Ambipolar Solar Cells with Trap-Mediated Recombination,” J. Phys. Chem. C 118, 1657416580 (2014).
F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, “Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy,” Sol. Energy Mater. Sol. Cells 87, 117131 (2005).
I. Mora-Seró, G. Garcia-Belmonte, P. P. Boix, M. A. Vázquez, and J. Bisquert, “Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities,” Energy Environ. Sci. 2, 678 (2009).
I. Mora-Seró et al., “Recombination rates in heterojunction silicon solar cells analyzed by impedance spectroscopy at forward bias and under illumination,” Sol. Energy Mater. Sol. Cells 92, 505509 (2008).
J. Bisquert, E. Palomares, and C. A. Quiñones, “Effect of energy disorder in interfacial kinetics of dye-sensitized solar cells with organic hole transport material,” J. Phys. Chem. B 110, 1940611 (2006).
F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Seró, and J. Bisquert, “Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy,” Phys. Chem. Chem. Phys. 13, 9083118 (2011).
E. J. Juarez-Perez et al., “Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells,” J. Phys. Chem. Lett. 5, 6805 (2014).
H.-S. Kim et al., “High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer,” Nano Lett. 13, 24127 (2013).
R. S. Sanchez et al., “Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis,” J. Phys. Chem. Lett. 5, 23572363 (2014).
C. Eames et al., “Ionic transport in hybrid lead iodide perovskite solar cells,” Nat. Commun. 6, 7497 (2015).
E. L. Unger et al., “Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells,” Energy Environ. Sci. 7, 36903698 (2014).
L. Cojocaru et al., “Temperature Effects on the Photovoltaic Performance of Planar Structure Perovskite Solar Cells,” Chem. Lett. 1557 (2015), doi:10.1246/cl.150781.
L. K. Ono, S. R. Raga, S. Wang, Y. Kato, and Y. Qi, “Temperature-dependent hysteresis effects in perovskite-based solar cells,” J. Mater. Chem. A 3, 90749080 (2014).
C. Quarti et al., “Structural and Optical Properties of Methylammonium Lead Iodide Across the Tetragonal to Cubic Phase Transition: Implications for Perovskite Solar Cells,” Energy Environ. Sci. (2015), doi:10.1039/C5EE02925B.
H. J. Snaith et al., “Anomalous Hysteresis in Perovskite Solar Cells,” J. Phys. Chem. Lett. 5, 15111515 (2014).
A. K. Jena et al., “The Interface between FTO and TiO2 Compact Layer can be one of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells,” ACS Appl. Mater. Interfaces 7, 98179823 (2015).
See supplementary material at for effects of processing condition on morphology of CH3NH3PbI3films and roughness profiles of CH3NH3PbI3 and ZnO-GO films. Also included is the optical profilometer thickness profile for ZnO films used for resistivity measurements and EDS data for ZnO-GO nanocomposite.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Perovskite based solar cells have demonstrated impressive performances. Controlled environment synthesis and expensive hole transport material impede their potential commercialization. We report ambient air synthesis of hole transport layer free devices using ZnO-GO as electron selective contacts. Solar cells fabricated with hole transport layer free architecture under ambient air conditions with ZnO as electron selective contact achieved an efficiency of 3.02%. We have demonstrated that by incorporating GO in ZnO matrix, low resistivity electron selective contacts, critical to improve the performance, can be achieved. We could achieve max efficiency of 4.52% with our completed devices for ZnO: GO composite. Impedance spectroscopy confirmed the decrease in series resistance and an increase in recombination resistance with inclusion of GO in ZnO matrix. Effect of temperature on completed devices was investigated by recording impedance spectra at 40 and 60 oC, providing indirect evidence of the performance of solar cells at elevated temperatures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd