Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953596
1.
N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, IEEE Trans. THz Sci. Technol. 3, 617 (2013).
http://dx.doi.org/10.1109/TTHZ.2013.2273226
2.
P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakić, E. H. Linfield, and A. G. Davies, J. Phys. D: Appl. Phys. 47, 374008 (2014).
http://dx.doi.org/10.1088/0022-3727/47/37/374008
3.
M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, Sci. Rep. 5, 13566 (2015).
http://dx.doi.org/10.1038/srep13566
4.
T. Zhou, Z. Y. Tan, L. Gu, Z. L. Fu, Z. W. Yao, and J. C. Cao, Electron. Lett. 51, 85 (2015).
http://dx.doi.org/10.1049/el.2014.3873
5.
Y. Ren, J. N. Hovenier, R. Higgins, J. R. Gao, T. M. Klapwijk, S. C. Shi, A. Bell, B. Klein, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 97, 161105 (2010).
http://dx.doi.org/10.1063/1.3502479
6.
P. Dean, M. Salih, S. P. Khanna, L. H. Li, N. K. Saat, A. Valavanis, A. Burnett, J. E. Cunningham, A. G. Davies, and E. H. Linfield, Semicond. Sci. Technol. 27, 094004 (2012).
http://dx.doi.org/10.1088/0268-1242/27/9/094004
7.
H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, J. Infrared Milli. Terahz. Waves 34, 325 (2013).
http://dx.doi.org/10.1007/s10762-013-9973-7
8.
S. Bartalini, L. Consolino, P. Cancio, P. De Natale, P. Bartolini, A. Taschin, M. De Pas, H. Beere, D. Ritchie, M. S. Vitiello, and R. Torre, Phys. Rev. X 4, 021006 (2014).
9.
H. Richter, M. Wienold, L. Schrottke, K. Biermann, H. T. Grahn, and H.-W. Hübers, IEEE Trans. THz Sci. Technol. 5, 539 (2015).
http://dx.doi.org/10.1109/TTHZ.2015.2442155
10.
A. J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 88, 151105 (2006).
http://dx.doi.org/10.1063/1.2194889
11.
E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kašalynas, A. J. L. Adam, J. R. Gao, T. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Phys. Rev. Lett. 96, 173904 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.173904
12.
M. Salih, P. Dean, A. Valavanis, S. P. Khanna, L. H. Li, J. E. Cunningham, A. G. Davies, and E. H. Linfield, J. Appl. Phys. 113, 113110 (2013).
http://dx.doi.org/10.1063/1.4795606
13.
H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, Opt. Express 13, 5890 (2005).
http://dx.doi.org/10.1364/OPEX.13.005890
14.
E. Bründermann, M. Havenith, G. Scalari, M. Giovannini, J. Faist, J. Kunsch, L. Mechold, and M. Abraham, Opt. Express 14, 1829 (2006).
http://dx.doi.org/10.1364/OE.14.001829
15.
H. Richter, N. Rothbart, and H.-W. Hübers, J. Infrared Milli. Terahz. Waves 35, 686 (2014).
http://dx.doi.org/10.1007/s10762-014-0084-x
16.
S. Barbieri, J. Alton, H. E. Beere, J. Fowler, E. H. Linfield, and D. A. Ritchie, Appl. Phys. Lett. 85, 1674 (2004).
http://dx.doi.org/10.1063/1.1784874
17.
M. Giehler, H. Kostial, R. Hey, and H. T. Grahn, Appl. Phys. Lett. 91, 161102 (2007).
http://dx.doi.org/10.1063/1.2794008
18.
B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed. (Wiley, Hoboken, 2007).
19.
D. M. Pozar, Microwave engineering, 4th ed. (Wiley, Hoboken, 2012).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953596
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953596
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953596
2016-06-06
2016-12-05

Abstract

The far-field distribution of the emission intensity of terahertz (THz) quantum-cascade lasers (QCLs) frequently exhibits multiple lobes instead of a single-lobed Gaussian distribution. We show that such multiple lobes can result from self-interference related to the typically large beam divergence of THz QCLs and the presence of an inevitable cryogenic operation environment including optical windows. We develop a quantitative model to reproduce the multiple lobes. We also demonstrate how a single-lobed far-field distribution can be achieved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953596.html;jsessionid=TbYjNFEN_w6qIrD_-gGt_xWX.x-aip-live-06?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953596&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953596&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953596'
Right1,Right2,Right3,