Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953672
1.
V. Zhirnov, R. Cavin, J. Hutchby, and G. Bourianoff, Proceedings of the IEEE 91, 1934 (2003).
http://dx.doi.org/10.1109/JPROC.2003.818324
2.
I. Žutić, J. Fabian, and S. D. Sarma, Reviews of Modern Physics 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
3.
L. Berger, Physical Review B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
4.
J. Slonczewski, Journal of Magnetism and Magnetic Materials 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
5.
C. Chappert, A. Fert, and F. N. Van Dau, Nature Materials 6, 813 (2007).
http://dx.doi.org/10.1038/nmat2024
6.
G. Prenat, B. Dieny, M. El Baraji, V. Javerliac, and J.-P. Nozieres, IEEE Transactions on Magnetics 45, 3400 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2025257
7.
R. P. Cowburn and M. E. Welland, Science 287, 1466 (2000).
http://dx.doi.org/10.1126/science.287.5457.1466
8.
S. Breitkreutz, J. Kiermaier, I. Eichwald, X. Ju, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer, IEEE Transactions on Magnetics 48, 4336 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2197184
9.
I. Eichwald, S. Breitkreutz, G. Ziemys, G. Csaba, W. Porod, and M. Becherer, Nanotechnology 25, 335202 (2014).
http://dx.doi.org/10.1088/0957-4484/25/33/335202
10.
M. T. Niemier, E. Varga, G. H. Bernstein, W. Porod, M. T. Alam, A. Dingler, A. Orlov, and X. S. Hu, IEEE Transactions on Nanotechnology 11, 220 (2012).
http://dx.doi.org/10.1109/TNANO.2010.2056697
11.
A. Ney, C. Pampuch, R. Koch, and K. H. Ploog, Nature 425, 485 (2003).
http://dx.doi.org/10.1038/nature02014
12.
L. Leem and J. S. Harris, Journal of Applied Physics 105, 07D102 (2009).
http://dx.doi.org/10.1063/1.3056141
13.
D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005).
http://dx.doi.org/10.1126/science.1108813
14.
D. M. Bromberg, D. H. Morris, L. Pileggi, and J. G. Zhu, IEEE Transactions on Magnetics 48, 3215 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2197186
15.
J. A. Currivan, Y. Jang, M. D. Mascaro, M. A. Baldo, and C. A. Ross, IEEE Magnetics Letters 3, 3 (2012).
http://dx.doi.org/10.1109/LMAG.2012.2188621
16.
K. Omari and T. Hayward, Physical Review Applied 2, 044001 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.044001
17.
S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hillebrands, and A. V. Chumak, Applied Physics Letters 105, 152410 (2014).
http://dx.doi.org/10.1063/1.4898042
18.
S. B. Akers, in 3rd Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 1962) (IEEE, 1962), pp. 149158.
http://dx.doi.org/10.1109/FOCS.1962.16
19.
B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta, Nature Nanotechnology 5, 266 (2010).
http://dx.doi.org/10.1038/nnano.2010.31
20.
B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, Applied Physics Letters 98, 123510 (2011).
http://dx.doi.org/10.1063/1.3567772
21.
S. Manipatruni, D. Nikonov, and I. Young, arXiv:1212.3362 (2012).
22.
D. E. Nikonov, G. I. Bourianoff, and T. Ghani, IEEE Electron Device Letters 32, 1128 (2011).
http://dx.doi.org/10.1109/LED.2011.2156379
23.
D. E. Nikonov, S. Manipatruni, and I. A. Young, Journal of Applied Physics 115, 24 (2014).
http://dx.doi.org/10.1063/1.4868621
24.
M. Donahue and D. Porter, OOMMF User’s Guide, Version 1.0, Interagency Report NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, MD, 1999).
25.
J. Z. Sun, Physical Review B 62, 570 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.570
26.
See supplementary material at http://dx.doi.org/10.1063/1.4953672 for the simulation protocol of Figs 4 and for more details on the magnetization dynamics.[Supplementary Material]
27.
Contrary to previous STT simulations, the boundary between success and failure is not a well-defined line. This difference is due to the current being just above its critical value instead of being much larger.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953672
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953672
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953672
2016-06-06
2016-09-26

Abstract

The functionality of a cross-shaped Spin Torque Majority Gate is explored by means of micromagnetic simulations. The different input combinations are simulated varying material parameters, current density and size. The main failure mode is identified: above a critical size, a domain wall can be pinned at the center of the cross, preventing further propagation of the information. By simulating several phase diagrams, the key parameters are obtained and the operating condition is deduced. A simple relation between the domain wall width and the size of the Spin Torque Majority Gate determines the working range. Finally, a correlation is found between the energy landscape and the main failure mode. We demonstrate that a macrospin behavior ensures a reliable majority gate operation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953672.html;jsessionid=tBeQLa6xcxMnPOgTBqW3osLL.x-aip-live-02?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953672&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953672&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953672'
Right1,Right2,Right3,