Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Stutzmann, G. Steinhoff, M. Eickhoff, O. Ambacher, C. E. Nebel, J. Schalwig, R. Neuberger, and G. Müller, “GaN-based heterostructures for sensor applications,” Diamond and Related Materials 11(3–6), 886-891 (2002).
R. Kirste, N. Rohrbaugh, I. Bryan, Z. Bryan, R. Collazo, and A. Ivanisevic, “Electronic Biosensors Based on III-Nitride Semiconductors,” Annual Review of Analytical Chemistry 8, 149-169 (2014).
E. Estephan, C. Larroque, F. d. r. J. G. Cuisinier, Z. n. Bálint, and C. Gergely, “Tailoring GaN Semiconductor Surfaces with Biomolecules,” The Journal of Physical Chemistry B 112(29), 8799-8805 (2008).
B. Baur, J. Howgate, H. G. von Ribbeck, Y. Gawlina, V. Bandalo, G. Steinhoff, M. Stutzmann, and M. Eickhoff, “Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors,” Applied Physics Letters 89(18), 3901 (2006).
M. S. Makowski, S. Kim, M. Gaillard, D. Janes, M. J. Manfra, I. Bryan, Z. Sitar, C. Arellano, J. Xie, R. Collazo, and A. Ivanisevic, “Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications,” Applied Physics Letters 102(7), 074102 (2013).
T. R. Lenka and A. K. Panda, “Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT,” Semiconductors 45(5), 650-656 (2011).
O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics 87(1), 334-344 (2000).
B. H. Chu, C. Y. Chang, K. Kroll, N. Denslow, Y.-L. Wang, S. J. Pearton, A. M. Dabiran, A. M. Wowchak, B. Cui, P. P. Chow, and F. Ren, “Detection of an endocrine disrupter biomarker, vitellogenin, in largemouth bass serum using AlGaN/GaN high electron mobility transistors,” Applied Physics Letters 96(1), 013701 (2010).
A. Podolska, M. Kocan, A. M. G. Cabezas, T. D. Wilson, G. A. Umana-Membreno, B. D. Nener, G. Parish, S. Keller, and U. K. Mishra, “Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices,” Applied Physics Letters 97(1), 012108 (2010).
M. Myers, F. L. M. Khir, A. Podolska, G. A. Umana-Membreno, B. Nener, M. Baker, and G. Parish, “Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode,” Sensors and Actuators B: Chemical 181, 301-305 (2013).
N. Rohrbaugh, I. Bryan, Z. Bryan, C. Arellano, R. Collazo, and A. Ivanisevic, “AlGaN/GaN field effect transistors functionalized with recognition peptides,” Applied Physics Letters 105(13), (2014).
P. Casal, X. Wen, S. Gupta, T. Nicholson, Y. Wang, A. Theiss, B. Bhushan, L. Brillson, W. Lu, and S. C. Lee, “ImmunoFET feasibility in physiological salt environments,” Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 370(1967), 2474-2488 (2012).
F. He, J. Gao, E. Pierce, P. J. Strong, H. Wang, and L. Liang, “In situ remediation technologies for mercury-contaminated soil,” Environmental Science and Pollution Research 22(11), 8124-8147 (2015).
V. Shankar, V. Thekkeettil, G. Sharma, and V. Agrawal, “Alleviation of heavy metal stress in Spilanthes calva L. (antimalarial herb) by exogenous application of glutathione,” In Vitro Cellular & Developmental Biology - Plant 48(1), 113-119 (2011).
W. Ben Ammar, C. Mediouni, B. Tray, M. H. Ghorbel, and F. Jemal, “Glutathione and phytochelatin contents in tomato plants exposed to cadmium,” Biologia Plantarum 52(2), 314-320.
V. Diopan, V. Shestivska, O. Zitka, M. Galiova, V. Adam, J. Kaiser, A. Horna, K. Novotny, M. Liska, L. Havel, J. Zehnalek, and R. Kizek, “Determination of Plant Thiols by Liquid Chromatography Coupled with Coulometric and Amperometric Detection in Lettuce Treated by Lead(II) Ions,” - 22(- 11), - 1259(2010).
L. P. Wei, J. R. Donat, G. Fones, and B. A. Ahner, “Interactions between Cd, and Cu, and Zn influence particulate phytochelatin concentrations in marine phytoplankton: Laboratory results and preliminary field data,” Environ. Sci. Technol. 37(16), 3609-3618 (2003).
F. Wu and G. Zhang, “Phytochelatin and its function in heavy metal tolerance of higer plants,” Yingyong Shengtai Xuebao 14(4), 632-636 (2003).
N. Rohrbaugh, I. Bryan, Z. Bryan, R. Collazo, and A. Ivanisevic, “Long-term stability assessment of AlGaN/GaN field effect transistors modified with peptides: Device characteristics vs. surface properties,” AIP Advances 5(9), 097102 (2015).
N. G. Berg, M. W. Nolan, T. Paskova, and A. Ivanisevic, “Surface Characterization of Gallium Nitride Modified with Peptides before and after Exposure to Ionizing Radiation in Solution,” Langmuir 30(51), 15477-15485 (2014).
S. Mita, R. Collazo, A. Rice, R. F. Dalmau, and Z. Sitar, “Influence of gallium supersaturation on the properties of GaN grown by metalorganic chemical vapor deposition,” Journal of Applied Physics 104(1), (2008).
C. M. Foster, R. Collazo, Z. Sitar, and A. Ivanisevic, “Cell Behavior on Gallium Nitride Surfaces: Peptide Affinity Attachment versus Covalent Functionalization,” Langmuir 29(26), 8377-8384 (2013).
M. S. Makowski, D. Y. Zemlyanov, J. A. Lindsey, J. C. Bernhard, E. M. Hagen, B. K. Chan, A. A. Petersohn, M. R. Medow, L. E. Wendel, D. Chen, J. M. Canter, and A. Ivanisevic, “Covalent attachment of a peptide to the surface of gallium nitride,” Surface Science 605(15–16), 1466-1475 (2011).
B. L. Pearce, N. G. Berg, M. S. Rahn, and A. Ivanisevic, “In situ and ex situ functionalization of nanostructured gallium oxy-hydroxide with a porphyrin dye” (2016) - n/a.
M. Reiner, M. Reiss, T. Brünig, L. Knuuttila, R. Pietschnig, and C. Ostermaier, “Chemical understanding and utility of H3PO4 etching of group-III- nitrides,” Phys. Status Solidi B 252(5), 1121-1126 (2015).
L. Chen, L. Yang, and Q. Wang, “In vivo phytochelatins and Hg-phytochelatin complexes in Hg-stressed Brassica chinensis L,” Metallomics 1(1), 101-106 (2009).
A. Dago, C. Arino, J. M. Diaz-Cruz, and M. Esteban, “Analysis of phytochelatins and Hg-phytochelatin complexes in Hordeum vulgare plants stressed with Hg and Cd: HPLC study with amperometric detection,” Int. J. Environ. Anal. Chem. 94(7), 668-678 (2014).
C. Bo-Yi, H. Wei-Chou, L. Ching-Sung, L. Han-Yin, T. Chih-Ming, and H. Chiu-Sheng, “Investigations of AlGaN/GaN HFETs utilizing post-metallization etching by nitric acid treatment,” Semiconductor Science and Technology 28(7), 074003 (2013).
H. P. Jambhulkar and A. A. Juwarkar, “Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump,” Ecotox. Environ. Safe. 72(4), 1122-1128 (2009).

Data & Media loading...


Article metrics loading...



This study examined the conductance sensitivity of AlGaN/GaN field effect transistors in response to varying Hg/HNO solutions. FET surfaces were covalently functionalized with phytochelatin-5 peptides in order to detect Hg in solution. Results showed a resilience of peptide-AlGaN/GaN bonds in the presence of strong HNO aliquots, with significant degradation in FET I signal. However, devices showed strong and varied response to Hg concentrations of 1, 10, 100, and 1000 ppm. The gathered statistically significant results indicate that peptide terminated AlGaN/GaN devices are capable of differentiating between Hg solutions and demonstrate device sensitivity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd