Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Ellmer, Nature Photonics 6, 809 (2012).
H. Hosono, Thin Solid Films 515, 6000 (2007).
G. Rupprecht, Z. Phys. 139, 504 (1954).
T. Minami, MRS Bull. 25, 38 (2000).
T. J. Coutts, D. L. Young, and X. Li, MRS Bull. 25, 58 (2000).
Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005).
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
H. R. Liu, J. H. Yang, H. J. Xiang, X. G. Gong, and S. H. Wei, Appl. Phys. Lett. 102, 112109 (2013).
X. Luo, Y. S. Oh, A. Sirenko, P. Gao, T. A. Tyson, K. Char, and S. W. Cheong, Appl. Phys. Lett. 100, 172112 (2012).
H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B. G. Jeon, K. T. Hong, W. J. Lee, C. Ju, K. H. Kim, and K. Char, Appl. Phys. Express 5, 061102 (2012).
H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B. G. Jeon, W. J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, and K. H. Kim, Phys. Rev. B 86, 165205 (2012).
H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem. 43, 1667 (2004).
K. Krishnaswamy, L. Bjaalie, B. Himmetoglu, A. Janotti, L. Gordon, and C. G. Van de Walle, Appl. Phys. Lett. 108, 083501 (2016).
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater. 11, 103 (2012).
S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, APL Mater. 4, 016106 (2016).
H. Mun, U. Kim, H. M. Kim, C. Park, T. h. Kim, H. J. Kim, K. H. Kim, and K. Char, Appl. Phys. Lett. 102, 252105 (2013).
P. V. Wadekar, J. Alaria, M. O’Sullivan, N. L. O. Flack, T. D. Manning, L. J. Phillips, K. Durose, O. Lozano, S. Lucas, J. B. Claridge, and M. J. Rosseinsky, Appl. Phys. Lett. 105, 052104 (2014).
W. J. Lee, H. J. Kim, E. Sohn, T. H. Kim, J. Y. Park, W. Park, H. Jeong, T. Lee, J. H. Kim, K. Y. Choi, and K. H. Kim, Appl. Phys. Lett. 108, 082105 (2016).
Z. Lebens-Higgins, D. O. Scanlon, H. Paik, S. Sallis, Y. Nie, M. Uchida, N. F. Quackenbush, M. J. Wahila, G. E. Sterbinsky, D. A. Arena, J. C. Woicik, D. G. Schlom, and L. F. J. Piper, Phys. Rev. Lett. 116, 027602 (2016).
After the submission of this paper, it has been reported that the mobility of La-doped BaSnO3 reaches 100 cm2 V−1s−1 probably owing to the reduction of unintentional impurity concentration by applying molecular beam epitaxy15 and the reduction of number of dislocations by homoepitaxy on BaSnO3 substrate.18
K. X. Chen, Q. Dai, W. Lee, J. K. Kim, E. F. Schubert, J. Grandusky, M. Mendrick, X. Li, and J. A. Smart, Appl. Phys. Lett. 93, 192108 (2008).
K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, T. Fujii, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 80, 4437 (2002).
Y. J. Mii, Y. H. Xie, E. A. Fitzgerald, Don Monroe, F. A. Thiel, B. E. Weir, and L. C. Feldman, Appl. Phys. Lett. 59, 1611 (1991).
A. Tsukazaki, A. Ohtomo, S. Yoshida, M. Kawasaki, C. H. Chia, T. Makino, Y. Segawa, T. Koida, S. F. Chichibu, and H. Koinuma, Appl. Phys. Lett. 83, 2784 (2003).
H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
X. D. Wu, R. C. Dye, R. E. Muenchausen, S. R. Foltyn, M. Maley, A. D. Rollett, A. R. Garcia, and N. S. Nogar, Appl. Phys. Lett. 58, 2165 (1991).
T. Huang, T. Nakamura, M. Itoh, Y. Inaguma, and O. Ishiyama, J. Mater. Sci. 30, 1556 (1995).
The lattice constant of (Srx, Ba1−x)SnO3 is obtained by assuming that SrSnO3 has an ideal cubic lattice with a = 4.034 Å and that the lattice constant changes linearly with x from BaSnO3 with a = 4.117 Å. The actual structure of SrSnO3 deviates slightly from the cubic lattice. However, this deviation does not alter our discussion to a great degree.
U. Kim, C. Park, T. Ha, R. Kim, H. S. Mun, H. M. Kim, H. J. Kim, T. H. Kim, N. Kim, J. Yu, K. H. Kim, J. H. Kim, and K. Char, APL Mater. 2, 056107 (2014).
C. J. Humphreys, Ultramicroscopy 7, 7 (1981).
J. S. Barnard, J. Sharp, J. R. Tong, and P. A. Midgley, Philosophical Magazine 86, 4901 (2006), DOI: 10.1080/14786430600798839.
J. Bai, M. Dudley, W. H. Sun, H. M. Wang, and M. Asif Khan, Appl. Phys. Lett. 88, 051903 (2006).
A. Ohtomo, H. Kimura, K. Saito, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, J. Cryst. Growth 214/215, 284 (2000).
É. Bévillon, A. Chesnaud, Y. Wang, G. Dezanneau, and G. Geneste, J. Phys.: Condens. Matter 20, 145217 (2008).
T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 87, 022101 (2005).
K. Ellmer and R. Mientus, Thin Solid films 516, 5829 (2007).
R. Pillarisetty, B. Chu-Kung, S. Corcoran, G. Dewey, J. Kavalieros, H. Kennel, R. Kotlyar, V. Le, D. Lionberger, M. Metz, N. Mukherjee, J. Nah, W. Rachmady, M. Radosavljevic, U. Shah, S. Taft, H. Then, N. Zelick, and R. Chau, in International Electron Devices Meeting (2010) DOI: 10.1109/IEDM.2010.5703312.
E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003).
J. Steinhauser, S. Faÿ, N. Oliveria, E. Vallat-Sauvain, and C. Ballif, Appl. Phys. Lett. 90, 142107 (2007).

Data & Media loading...


Article metrics loading...



One perovskite oxide, SnO ( = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO / (Sr,Ba)SnO for buffering this large lattice mismatch between La:BaSnO and SrTiO substrate. The insertion of 200-nm-thick BaSnO on (Sr,Ba)SnO bilayer buffer structures reduces the number of dislocations and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO shows that the highest obtained value of mobility is 78 cm2V−1s−1 because of its fewer dislocations. High electron mobility films based on perovskite BaSnO can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd