Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953808
1.
K. Ellmer, Nature Photonics 6, 809 (2012).
http://dx.doi.org/10.1038/nphoton.2012.282
2.
H. Hosono, Thin Solid Films 515, 6000 (2007).
http://dx.doi.org/10.1016/j.tsf.2006.12.125
3.
G. Rupprecht, Z. Phys. 139, 504 (1954).
http://dx.doi.org/10.1007/BF01374559
4.
T. Minami, MRS Bull. 25, 38 (2000).
http://dx.doi.org/10.1557/mrs2000.149
5.
T. J. Coutts, D. L. Young, and X. Li, MRS Bull. 25, 58 (2000).
http://dx.doi.org/10.1557/mrs2000.152
6.
Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, and T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005).
http://dx.doi.org/10.1063/1.1949728
7.
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
8.
H. R. Liu, J. H. Yang, H. J. Xiang, X. G. Gong, and S. H. Wei, Appl. Phys. Lett. 102, 112109 (2013).
http://dx.doi.org/10.1063/1.4798325
9.
X. Luo, Y. S. Oh, A. Sirenko, P. Gao, T. A. Tyson, K. Char, and S. W. Cheong, Appl. Phys. Lett. 100, 172112 (2012).
http://dx.doi.org/10.1063/1.4709415
10.
H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B. G. Jeon, K. T. Hong, W. J. Lee, C. Ju, K. H. Kim, and K. Char, Appl. Phys. Express 5, 061102 (2012).
http://dx.doi.org/10.1143/APEX.5.061102
11.
H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B. G. Jeon, W. J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, and K. H. Kim, Phys. Rev. B 86, 165205 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.165205
12.
H. Mizoguchi, H. W. Eng, and P. M. Woodward, Inorg. Chem. 43, 1667 (2004).
http://dx.doi.org/10.1021/ic034551c
13.
K. Krishnaswamy, L. Bjaalie, B. Himmetoglu, A. Janotti, L. Gordon, and C. G. Van de Walle, Appl. Phys. Lett. 108, 083501 (2016).
http://dx.doi.org/10.1063/1.4942366
14.
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nature Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
15.
S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, APL Mater. 4, 016106 (2016).
http://dx.doi.org/10.1063/1.4939657
16.
H. Mun, U. Kim, H. M. Kim, C. Park, T. h. Kim, H. J. Kim, K. H. Kim, and K. Char, Appl. Phys. Lett. 102, 252105 (2013).
http://dx.doi.org/10.1063/1.4812642
17.
P. V. Wadekar, J. Alaria, M. O’Sullivan, N. L. O. Flack, T. D. Manning, L. J. Phillips, K. Durose, O. Lozano, S. Lucas, J. B. Claridge, and M. J. Rosseinsky, Appl. Phys. Lett. 105, 052104 (2014).
http://dx.doi.org/10.1063/1.4891816
18.
W. J. Lee, H. J. Kim, E. Sohn, T. H. Kim, J. Y. Park, W. Park, H. Jeong, T. Lee, J. H. Kim, K. Y. Choi, and K. H. Kim, Appl. Phys. Lett. 108, 082105 (2016).
http://dx.doi.org/10.1063/1.4942509
19.
Z. Lebens-Higgins, D. O. Scanlon, H. Paik, S. Sallis, Y. Nie, M. Uchida, N. F. Quackenbush, M. J. Wahila, G. E. Sterbinsky, D. A. Arena, J. C. Woicik, D. G. Schlom, and L. F. J. Piper, Phys. Rev. Lett. 116, 027602 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.027602
20.
After the submission of this paper, it has been reported that the mobility of La-doped BaSnO3 reaches 100 cm2 V−1s−1 probably owing to the reduction of unintentional impurity concentration by applying molecular beam epitaxy15 and the reduction of number of dislocations by homoepitaxy on BaSnO3 substrate.18
21.
K. X. Chen, Q. Dai, W. Lee, J. K. Kim, E. F. Schubert, J. Grandusky, M. Mendrick, X. Li, and J. A. Smart, Appl. Phys. Lett. 93, 192108 (2008).
http://dx.doi.org/10.1063/1.3021076
22.
K. Terai, M. Lippmaa, P. Ahmet, T. Chikyow, T. Fujii, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett. 80, 4437 (2002).
http://dx.doi.org/10.1063/1.1484242
23.
Y. J. Mii, Y. H. Xie, E. A. Fitzgerald, Don Monroe, F. A. Thiel, B. E. Weir, and L. C. Feldman, Appl. Phys. Lett. 59, 1611 (1991).
http://dx.doi.org/10.1063/1.106246
24.
A. Tsukazaki, A. Ohtomo, S. Yoshida, M. Kawasaki, C. H. Chia, T. Makino, Y. Segawa, T. Koida, S. F. Chichibu, and H. Koinuma, Appl. Phys. Lett. 83, 2784 (2003).
http://dx.doi.org/10.1063/1.1615834
25.
H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).
http://dx.doi.org/10.1063/1.96549
26.
X. D. Wu, R. C. Dye, R. E. Muenchausen, S. R. Foltyn, M. Maley, A. D. Rollett, A. R. Garcia, and N. S. Nogar, Appl. Phys. Lett. 58, 2165 (1991).
http://dx.doi.org/10.1063/1.104994
27.
T. Huang, T. Nakamura, M. Itoh, Y. Inaguma, and O. Ishiyama, J. Mater. Sci. 30, 1556 (1995).
http://dx.doi.org/10.1007/BF00375264
28.
The lattice constant of (Srx, Ba1−x)SnO3 is obtained by assuming that SrSnO3 has an ideal cubic lattice with a = 4.034 Å and that the lattice constant changes linearly with x from BaSnO3 with a = 4.117 Å. The actual structure of SrSnO3 deviates slightly from the cubic lattice. However, this deviation does not alter our discussion to a great degree.
29.
U. Kim, C. Park, T. Ha, R. Kim, H. S. Mun, H. M. Kim, H. J. Kim, T. H. Kim, N. Kim, J. Yu, K. H. Kim, J. H. Kim, and K. Char, APL Mater. 2, 056107 (2014).
http://dx.doi.org/10.1063/1.4874895
30.
C. J. Humphreys, Ultramicroscopy 7, 7 (1981).
http://dx.doi.org/10.1016/0304-3991(81)90017-6
31.
J. S. Barnard, J. Sharp, J. R. Tong, and P. A. Midgley, Philosophical Magazine 86, 4901 (2006), DOI: 10.1080/14786430600798839.
http://dx.doi.org/10.1080/14786430600798839
32.
J. Bai, M. Dudley, W. H. Sun, H. M. Wang, and M. Asif Khan, Appl. Phys. Lett. 88, 051903 (2006).
http://dx.doi.org/10.1063/1.2170407
33.
A. Ohtomo, H. Kimura, K. Saito, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, J. Cryst. Growth 214/215, 284 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00093-2
34.
É. Bévillon, A. Chesnaud, Y. Wang, G. Dezanneau, and G. Geneste, J. Phys.: Condens. Matter 20, 145217 (2008).
http://dx.doi.org/10.1088/0953-8984/20/14/145217
35.
T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 87, 022101 (2005).
http://dx.doi.org/10.1063/1.1991994
36.
K. Ellmer and R. Mientus, Thin Solid films 516, 5829 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.10.082
37.
R. Pillarisetty, B. Chu-Kung, S. Corcoran, G. Dewey, J. Kavalieros, H. Kennel, R. Kotlyar, V. Le, D. Lionberger, M. Metz, N. Mukherjee, J. Nah, W. Rachmady, M. Radosavljevic, U. Shah, S. Taft, H. Then, N. Zelick, and R. Chau, in International Electron Devices Meeting (2010) DOI: 10.1109/IEDM.2010.5703312.
http://dx.doi.org/10.1109/IEDM.2010.5703312
38.
E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003).
http://dx.doi.org/10.1063/1.1578694
39.
J. Steinhauser, S. Faÿ, N. Oliveria, E. Vallat-Sauvain, and C. Ballif, Appl. Phys. Lett. 90, 142107 (2007).
http://dx.doi.org/10.1063/1.2719158
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953808
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953808
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953808
2016-06-07
2016-10-01

Abstract

One perovskite oxide, SnO ( = Sr, Ba), is a candidate for use as a transparent conductive oxide with high electron mobility in single crystalline form. However, the electron mobility of films grown on SrTiO substrates does not reach the bulk value, probably because of dislocation scattering that originates from the large lattice mismatch. This study investigates the effect of insertion of bilayer BaSnO / (Sr,Ba)SnO for buffering this large lattice mismatch between La:BaSnO and SrTiO substrate. The insertion of 200-nm-thick BaSnO on (Sr,Ba)SnO bilayer buffer structures reduces the number of dislocations and improves surface smoothness of the films after annealing as proved respectively by scanning transmission electron microscopy and atomic force microscopy. A systematic investigation of BaSnO buffer layer thickness dependence on Hall mobility of the electron transport in La:BaSnO shows that the highest obtained value of mobility is 78 cm2V−1s−1 because of its fewer dislocations. High electron mobility films based on perovskite BaSnO can provide a good platform for transparent-conducting-oxide electronic devices and for creation of fascinating perovskite heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953808.html;jsessionid=iTsPPHLlZZG9wsRTxopM_RBk.x-aip-live-03?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953808&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953808&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953808'
Right1,Right2,Right3,