Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).
H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12, 3695 (2012).
S. W. Min, H. S. Lee, H. J. Choi, M. K. Park, T. Nam, H. Kim, S. Ryu, and S. Im, Nanoscale 5, 548 (2013).
S. Das and J. Appenzeller, Phys. Status Solidi RRL 7, 268 (2013).
W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013).
G. H. Lee, Y. J. Yu, X. Cui, N. Petrone, C. H. Lee, M. S. Choi, D. Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Tanaguchi, C. Nuckolls, P. Kim, and J. Hone, ACS Nano 7, 7931 (2013).
S. L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W. W. Li, Y. F. Lin, A. Aparecido-Ferreira, and K. Tsukagoshi, Nano Lett. 13, 3546 (2013).
R. Yang, Z. Wang, and P. X. L. Feng, Nanoscale 6, 12383 (2014).
D. Lembke, A. Allain, and A. Kis, Nanoscale 7, 6255 (2015).
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
A. Molina-Sanchez and L. Wirtz, Phys. Rev. B 84, 155413 (2011).
T. Cheiwchanchamnangij and W. R. L. Lambrecht, Phys. Rev. B 85, 205302 (2012).

Data & Media loading...


Article metrics loading...



We investigated the dependence of electron mobility on the thickness of MoS nanosheets by fabricating bottom-gate single and few-layer MoS thin-film transistors with SiO gate dielectrics and Au electrodes. All the fabricated MoS transistors showed on/off-current ratio of ∼107 and saturated output characteristics without high-k capping layers. As the MoS thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS transistors increased from ∼10 to ∼18 cm2V−1s−1. The increased subthreshold swing of the fabricated transistors with MoS thickness suggests that the increase of MoS mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS layer on its thickness.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd