Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A.L. Chun, Nature Nanotechnology 305, 1038 (2007).
Z. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H. Yu, and H. Jiang, Nature communications 5, 3140 (2014).
J. Fuller, A. Breda, and R. Carlin, Journal of the Electrochemical Society 144, 67 (1997).
J.W. Fergus, Journal of Power Sources 195, 4554 (2010).
J.M. Tarascon and M. Armand, Nature 414, 359 (2001).
C. Wang, W. Zheng, Z. Yue, C.O. Too, and G.G. Wallace, Advanced Materials 23, 3580 (2011).
D. Tobjörk and R. Österbacka, Advanced Materials 23, 1935 (2011).
L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, and Y. Cui, Proceedings of the National Academy of Sciences 106, 21490 (2009).
N. Aliahmad, M. Agarwal, S. Shrestha, and K. Varahramyan, IEEE Transactions on Nanotechnology 12.3, 408 (2013).
F.M. Gray, Solid polymer electrolytes (VCH New Tork etc, 1991).
J.B. Goodenough and Y. Kim, “Challenges for rechargeable Li batteries,” Chemistry of Materials 22.3, 587 (2009).
L. Shi, R. Wang, Y. Cao, D. Liang, and J. Tay, Journal of power sources 315, 195 (2008).
H. Ye, J. Huang, J.J. Xu, A. Khalfan, and S.G. Greenbaum, Journal of the Electrochemical Society 154, A1048 (2007).
J. J. Song, Y. Wang, and C. Wan, Journal of Power Sources 77, 183 (1999).
D. Saikia and A. Kumar, Electrochimica acta 49, 2581 (2004).
J. H. Cao, B. K. Zhu, and Y. Y. Xu, Journal of membrane science 281, 446 (2006).
M. Moshkovich, M. Cojocaru, H. Gottlieb, and D. Aurbach, Journal of Electroanalytical Chemistry 497, 84 (2001).
Y. Liang, Z. Lin, Y. Qiu, and X. Zhang, Electrochimica Acta 56, 6474 (2011).
M. Yang and J. Hou, Membranes 2, 367 (2012).
A. Mansourizadeh and A. Ismail, International Journal of Greenhouse Gas Control 5, 640 (2011).
J. Wang, L. Li, C.L. Wong, and S. Madhavi, Nanotechnology 23, 495401 (2012).
C. Liu and H. M. Cheng, Journal of Physics D: Applied Physics 38, R231 (2005).
M. Agarwal, Q. Xing, B.S. Shim, N. Kotov, K. Varahramyan, and Y. Lvov, Nanotechnology 20, 215602 (2009).
M. Agarwal, Y. Lvov, and K. Varahramyan, Nanotechnology 17, 5319 (2006).
S. Rajabzadeh, T. Maruyama, T. Sotani, and H. Matsuyama, Separation and Purification Technology 63, 415 (2008).
S. Atchariyawut, C. Feng, R. Wang, R. Jiraratananon, and D. Liang, Journal of Membrane Science 285, 272 (2006).
P. G. Bruce, Solid State Electrochemistry (Cambridge University Press, 1997), Vol. 5.
S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, and Å. Wendsjö, Polymer 42, 1407 (2001).
Fergus and W. Jeffery, Journal of Power Sources 195, 4554 (2010).
A. Daneshkhah, S. Shrestha, M. Agarwal, and K. Varahramyan, Sensors and Actuators B: Chemical 221, 635 (2015).
S. H. Yeon, K. S. Kim, S. Choi, J.-H. Cha, and H. Lee, Journal of Physical Chemistry B 109, 17928 (2005).
S. Jeschke, M. Mutke, Z. Jiang, B. Alt, and H. D. Wiemhöfer, ChemPhysChem 15, 1761 (2014).
J. Zhao, L. Wang, X. He, C. Wan, and C. Jiang, Journal of Electrochemical Society 155, A292 (2008).
P. Arora, R. E. White, and M. Doyle, Journal of Electrochemical Society 145, 3647 (1998).
A. Du Pasquier, I. Plitz, J. Gural, F. Badway, and G. G. Amatucci, Journal of Power Sources 136, 160 (2004).
B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Energy & Environmental Science 6, 638 (2009).

Data & Media loading...


Article metrics loading...



Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g−1 for standard metallic current collectors and (ii) 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd