Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953811
1.
A.L. Chun, Nature Nanotechnology 305, 1038 (2007).
2.
Z. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C.K. Chan, H. Yu, and H. Jiang, Nature communications 5, 3140 (2014).
3.
J. Fuller, A. Breda, and R. Carlin, Journal of the Electrochemical Society 144, 67 (1997).
http://dx.doi.org/10.1149/1.1837555
4.
J.W. Fergus, Journal of Power Sources 195, 4554 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2010.01.076
5.
J.M. Tarascon and M. Armand, Nature 414, 359 (2001).
http://dx.doi.org/10.1038/35104644
6.
C. Wang, W. Zheng, Z. Yue, C.O. Too, and G.G. Wallace, Advanced Materials 23, 3580 (2011).
http://dx.doi.org/10.1002/adma.201101067
7.
D. Tobjörk and R. Österbacka, Advanced Materials 23, 1935 (2011).
http://dx.doi.org/10.1002/adma.201004692
8.
L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, and Y. Cui, Proceedings of the National Academy of Sciences 106, 21490 (2009).
http://dx.doi.org/10.1073/pnas.0908858106
9.
N. Aliahmad, M. Agarwal, S. Shrestha, and K. Varahramyan, IEEE Transactions on Nanotechnology 12.3, 408 (2013).
http://dx.doi.org/10.1109/TNANO.2013.2252922
10.
F.M. Gray, Solid polymer electrolytes (VCH New Tork etc, 1991).
11.
J.B. Goodenough and Y. Kim, “Challenges for rechargeable Li batteries,” Chemistry of Materials 22.3, 587 (2009).
12.
L. Shi, R. Wang, Y. Cao, D. Liang, and J. Tay, Journal of power sources 315, 195 (2008).
13.
H. Ye, J. Huang, J.J. Xu, A. Khalfan, and S.G. Greenbaum, Journal of the Electrochemical Society 154, A1048 (2007).
http://dx.doi.org/10.1149/1.2779962
14.
J. J. Song, Y. Wang, and C. Wan, Journal of Power Sources 77, 183 (1999).
http://dx.doi.org/10.1016/S0378-7753(98)00193-1
15.
D. Saikia and A. Kumar, Electrochimica acta 49, 2581 (2004).
http://dx.doi.org/10.1016/j.electacta.2004.01.029
16.
J. H. Cao, B. K. Zhu, and Y. Y. Xu, Journal of membrane science 281, 446 (2006).
http://dx.doi.org/10.1016/j.memsci.2006.04.013
17.
M. Moshkovich, M. Cojocaru, H. Gottlieb, and D. Aurbach, Journal of Electroanalytical Chemistry 497, 84 (2001).
http://dx.doi.org/10.1016/S0022-0728(00)00457-5
18.
Y. Liang, Z. Lin, Y. Qiu, and X. Zhang, Electrochimica Acta 56, 6474 (2011).
http://dx.doi.org/10.1016/j.electacta.2011.05.007
19.
M. Yang and J. Hou, Membranes 2, 367 (2012).
http://dx.doi.org/10.3390/membranes2030367
20.
A. Mansourizadeh and A. Ismail, International Journal of Greenhouse Gas Control 5, 640 (2011).
http://dx.doi.org/10.1016/j.ijggc.2011.03.009
21.
J. Wang, L. Li, C.L. Wong, and S. Madhavi, Nanotechnology 23, 495401 (2012).
http://dx.doi.org/10.1088/0957-4484/23/49/495401
22.
C. Liu and H. M. Cheng, Journal of Physics D: Applied Physics 38, R231 (2005).
http://dx.doi.org/10.1088/0022-3727/38/14/R01
23.
M. Agarwal, Q. Xing, B.S. Shim, N. Kotov, K. Varahramyan, and Y. Lvov, Nanotechnology 20, 215602 (2009).
http://dx.doi.org/10.1088/0957-4484/20/21/215602
24.
M. Agarwal, Y. Lvov, and K. Varahramyan, Nanotechnology 17, 5319 (2006).
http://dx.doi.org/10.1088/0957-4484/17/21/006
25.
S. Rajabzadeh, T. Maruyama, T. Sotani, and H. Matsuyama, Separation and Purification Technology 63, 415 (2008).
http://dx.doi.org/10.1016/j.seppur.2008.05.027
26.
S. Atchariyawut, C. Feng, R. Wang, R. Jiraratananon, and D. Liang, Journal of Membrane Science 285, 272 (2006).
http://dx.doi.org/10.1016/j.memsci.2006.08.029
27.
P. G. Bruce, Solid State Electrochemistry (Cambridge University Press, 1997), Vol. 5.
28.
S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, and Å. Wendsjö, Polymer 42, 1407 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00517-6
29.
Fergus and W. Jeffery, Journal of Power Sources 195, 4554 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2010.01.076
30.
A. Daneshkhah, S. Shrestha, M. Agarwal, and K. Varahramyan, Sensors and Actuators B: Chemical 221, 635 (2015).
http://dx.doi.org/10.1016/j.snb.2015.06.145
31.
S. H. Yeon, K. S. Kim, S. Choi, J.-H. Cha, and H. Lee, Journal of Physical Chemistry B 109, 17928 (2005).
http://dx.doi.org/10.1021/jp053237w
32.
S. Jeschke, M. Mutke, Z. Jiang, B. Alt, and H. D. Wiemhöfer, ChemPhysChem 15, 1761 (2014).
http://dx.doi.org/10.1002/cphc.201400065
33.
J. Zhao, L. Wang, X. He, C. Wan, and C. Jiang, Journal of Electrochemical Society 155, A292 (2008).
http://dx.doi.org/10.1149/1.2837832
34.
P. Arora, R. E. White, and M. Doyle, Journal of Electrochemical Society 145, 3647 (1998).
http://dx.doi.org/10.1149/1.1838857
35.
A. Du Pasquier, I. Plitz, J. Gural, F. Badway, and G. G. Amatucci, Journal of Power Sources 136, 160 (2004).
http://dx.doi.org/10.1016/j.jpowsour.2004.05.023
36.
B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Energy & Environmental Science 6, 638 (2009).
http://dx.doi.org/10.1039/b904116h
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953811
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953811
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953811
2016-06-07
2016-12-05

Abstract

Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g−1 for standard metallic current collectors and (ii) 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953811.html;jsessionid=zlS1vbqX_0qJTPkpPQl5NTkx.x-aip-live-03?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953811&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953811&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953811'
Right1,Right2,Right3,