Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/6/10.1063/1.4953845
1.
S. Höfle, H. Do, E. Mankel, M. Pfaff, Z. Zhang, D. Bahro, T. Mayer, W. Jaegermann, D. Gerthsen, C. Feldmann, U. Lemmer, and A. Colsmann, Organic Electronics 14, 18201824 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.04.017
2.
S. Tekoglu, G. Hernandez-Sosa, E. Kluge, U. Lemmer, and N. Mechau, Organic Electronics 14, 34933499 (2013).
http://dx.doi.org/10.1016/j.orgel.2013.09.027
3.
S. R. Forrest, Chemical Reviews 97, 17931896 (1997).
http://dx.doi.org/10.1021/cr941014o
4.
S. Sax, N. Rugen-Penkalla, A. Neuhold, S. Schuh, E. Zojer, E. J. W. List, and K. Müllen, Advanced Materials 22, 20872091 (2010).
http://dx.doi.org/10.1002/adma.200903076
5.
A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, and A. B. Holmes, Chemical Reviews 109, 8971091 (2009).
http://dx.doi.org/10.1021/cr000013v
6.
J. Willmann, D. Stocker, and E. Dörsam, Organic Electronics 15, 16311640 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.04.022
7.
K. Kawano, K. Nagayoshi, T. Yamaki, and C. Adachi, Organic Electronics 15, 16951701 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.04.035
8.
H.-W. Chang, Y.-T. Lee, M.-R. Tseng, M.-H. Jang, H.-C. Yeh, H.-F. Meng, C.-T. Chen, Y. Chi, Y. Qiu, L. Duan, H.-W. Lin, S.-F. Horng, and H.-W. Zan, Synthetic Metals 196, 99109 (2014).
http://dx.doi.org/10.1016/j.synthmet.2014.07.003
9.
C.-H. Jun, S. Ohisa, Y.-J. Pu, T. Chiba, and J. Kido, Journal of Photopolymers Science and Technology 28, 343347 (2015).
http://dx.doi.org/10.2494/photopolymer.28.343
10.
A. Perumal, H. Faber, N. Yaacobi-Gross, P. Pattanasattayavong, C. Burgess, S. Jha, M. A. McLachlan, P. N. Stavrinou, T. D. Anthopoulos, and D. D. C. Bradley, Advanced Materials 27, 93100 (2014).
http://dx.doi.org/10.1002/adma.201403914
11.
A. R. G. Smith, K. H. Lee, A. Nelson, M. James, P. L. Burn, and I. R. Gentle, Advanced Materials 24, 822826 (2012).
http://dx.doi.org/10.1002/adma.201104029
12.
M. Eritt, C. May, K. Leo, M. Toerker, and C. Radehaus, Thin Solid Films 518, 30423045 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.09.188
13.
L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, and Y. Qiu, Journal of Materials Chemistry 20, 6392 (2010).
http://dx.doi.org/10.1039/b926348a
14.
A. Elschner, H. W. Heuer, F. Jonas, S. Kirchmeyer, R. Wehrmann, and K. Wussow, Advanced Materials Research News 13, 18111815 (2001).
15.
S.-R. Tseng, H.-F. Meng, C.-H. Yeh, H.-C. Lai, S.-F. Horng, H.-H. Liao, C.-S. Hsu, and L.-C. Lin, Synthetic Metals 158, 130134 (2008).
http://dx.doi.org/10.1016/j.synthmet.2007.12.016
16.
T. Earmme and S. A. Jenekhe, Journal of Materials Chemistry 22, 4660 (2012).
http://dx.doi.org/10.1039/c2jm14347j
17.
T. Chiba, Y.-J. Pu, and J. Kido, Advanced Materials 27, 46814687 (2015).
http://dx.doi.org/10.1002/adma.201501866
18.
H. Gorter, M. Coenen, M. Slaats, M. Ren, W. Lu, C. J. Kuijpers, and W. A. Groen, Thin Solid Films 532, 1115 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.01.041
19.
K. H. Kim, J. Y. Lee, T. J. Park, W. S. Jeon, G. P. Kennedy, and J. H. Kwon, Synthetic Metals 160, 631635 (2010).
http://dx.doi.org/10.1016/j.synthmet.2009.12.020
20.
J. Park, T. Park, W. Jeon, R. Pode, J. Jang, J. Kwon, E. Yu, and M. Chae, Organic Electronics 10, 189193 (2009).
http://dx.doi.org/10.1016/j.orgel.2008.08.014
21.
J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I.-F. Lin, and S.-F. Horng, Organic Electronics 10, 16101614 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.06.020
22.
C.-Y. Chen, H.-W. Chang, Y.-F. Chang, B.-J. Chang, Y.-S. Lin, P.-S. Jian, H.-C. Yeh, H.-T. Chien, E.-C. Chen, Y.-C. Chao, H.-F. Meng, H.-W. Zan, H.-W. Lin, S.-F. Horng, Y.-J. Cheng, F.-W. Yen, I.-F. Lin, H.-Y. Yang, K.-J. Huang, and M.-R. Tseng, Journal of Applied Physics 110, 94501 (2011).
http://dx.doi.org/10.1063/1.3636398
23.
H.-C. Yeh, H.-F. Meng, H.-W. Lin, T.-C. Chao, M.-R. Tseng, and H.-W. Zan, Organic Electronics 13, 914918 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.02.001
24.
M. Y. Lim, W. Yunus, Z. A. Talib, A. Kassim, C. F. Dee, and A. Ismail, American Journal of Engineering and Applied Sciences 3, 6467 (2010).
http://dx.doi.org/10.3844/ajeassp.2010.64.67
25.
F. Lindla, M. Boesing, P. van Gemmern, D. Bertram, D. Keiper, M. Heuken, H. Kalisch, and R. H. Jansen, Applied Physics Letters 98, 173304 (2011).
http://dx.doi.org/10.1063/1.3584033
26.
M. Carvelli, A. van Reenen, R. Janssen, H. P. Loebl, and R. Coehoorn, Organic Electronics 13, 26052614 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.07.035
27.
G. Mao, Z. Wu, Q. He, B. Jiao, G. Xu, X. Hou, Z. Chen, and Q. Gong, Applied Surface Science 257, 73947398 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.02.046
28.
N. R. Park, G. Y. Ryu, D. H. Lim, S. J. Lee, Y. K. Kim, and D. M. Shin, Journal of Nanoscience and Nanotechnology 14, 51095113 (2014).
http://dx.doi.org/10.1166/jnn.2014.8427
29.
S. Scholz, Q. Huang, M. Thomschke, S. Olthof, P. Sebastian, K. Walzer, K. Leo, S. Oswald, C. Corten, and D. Kuckling, Journal of Applied Physics 104, 104502 (2008).
http://dx.doi.org/10.1063/1.3018716
30.
B.-Y. Yu, Y.-Y. Chen, W.-B. Wang, M.-F. Hsu, S.-P. Tsai, W.-C. Lin, Y.-C. Lin, J.-H. Jou, C.-W. Chu, and J.-J. Shyue, Analytical Chemistry 80, 34123415 (2008).
http://dx.doi.org/10.1021/ac702626n
31.
K. Peters, L. Wengeler, P. Scharfer, and W. Schabel, Journal of Coatings Technology and Research 11, 7581 (2014).
http://dx.doi.org/10.1007/s11998-013-9515-1
32.
M. Baunach, S. Jaiser, S. Schmelzle, H. Nirschl, P. Scharfer, and W. Schabel, Drying Technology 34, 462473 (2015).
http://dx.doi.org/10.1080/07373937.2015.1060497
33.
K. L. Parry, A. G. Shard, R. D. Short, R. G. White, J. D. Whittle, and A. Wright, Surface and Interface Analysis 38, 14971504 (2006).
http://dx.doi.org/10.1002/sia.2400
34.
J. H. Scofield, Journal of Electron Spectroscopy and Related Phenomena 8, 129137 (1976).
http://dx.doi.org/10.1016/0368-2048(76)80015-1
35.
S. Tanuma, C. J. Powell, and D. R. Penn, Surface and Interface Analysis 21, 165176 (1993).
http://dx.doi.org/10.1002/sia.740210302
36.
P. J. Cumpson, J. F. Portoles, N. Sano, and A. J. Barlow, Journal of Vacuum Science and Technology B 31, 21208 (2013).
http://dx.doi.org/10.1116/1.4793284
37.
See supplementary material at http://dx.doi.org/10.1063/1.4953845 for the calculations of the solubility, Supplemental material A and for the modeling of diffusion and drying, Supplemental material B.[Supplementary Material]
38.
VDI-Wärmeatlas, 10th ed., edited by Verein Deutscher Ingenieure (Springer-Verlag, Berlin, Heidelberg, New York, 2006).
39.
E.-U. Schlünder, Einführung in die Stoffübertragung: Lehrbuchreihe Chemieingenieurwesen-Verfahrenstechnik (Vieweg, Braunschweig, Wiesbaden, 1996).
40.
W. Schabel, Trocknung von Polymerfilmen: Messung von Konzentrationsprofilen mit der Inversen-Mikro-Raman-Spektroskopie (Universität Karlsruhe (TH), Shaker, Aachen, 2004).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/6/10.1063/1.4953845
Loading
/content/aip/journal/adva/6/6/10.1063/1.4953845
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/6/10.1063/1.4953845
2016-06-08
2016-09-28

Abstract

Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/6/1.4953845.html;jsessionid=sacS5lPXrKaCZjVZGIDPz6NL.x-aip-live-03?itemId=/content/aip/journal/adva/6/6/10.1063/1.4953845&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/6/10.1063/1.4953845&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/6/10.1063/1.4953845'
Right1,Right2,Right3,