Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. D. Lindle, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kanffman, O. L. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,’” Phys. Plasmas. 11, 339491 (2004).
B. A. Remington, R. P. Drake, and D. D. Ryutov, “Experimental astrophysics with high power lasers and Z pinches,” Rev. Mod. Phys. 78, 755807 (2004).
B. A. Remington, S. V. Weber, M. M. Marinak, S. W. Haan, J. D. Kilkenny, R. J. Wallace, and G. Dimonte, “Single-mode and multimode Rayleigh-Taylor experiments on Nova,” Phys. Plasmas. 2, 241255 (1995).
G. Dimonte, C. E. Frerking, M. Schneider, and B. Remington, “Richtmyer-Meshkov instability with strong driven shocks,” Phys. Plasmas. 3, 614630 (1996).
K. Shigemori, H. Azechi, M. Nakai, M. Honda, K. Meguro, N. Miyanaga, H. Takabe, and K. Mima, “Measurements of Rayleigh-Taylor growth rate of planar targets irradiated directly by partially coherent light,” Phys. Rev. Lett. 78, 250253 (1997).
D. P. Smitherman, R. E. Chrien, N. M. Hoffman, and G. R. Magelssen, “The feedout process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in uniform, radiation-driven foils,” Phys. Plasmas. 6, 932939 (1999).
J. P. Knauer, R. Betti, D. K. Bradley, T. R. Boehly, T. J. B. Collins, V. N. Goncharov, P. W. Mckenty, D. D. Meyerhofer, and V. A. Smalyuk, “Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system,” Phys. Plasmas. 7, 338345 (2000).
J. A. Cobble, T. E. Tierney, N. M. Hoffman, B. G. Devolder, and D. C. Swift, “Late-time radiography of beryllium ignition-target ablators in long-pulse gas-filled hohlraums,” Phys. Plasmas. 13, 056304-1056304-7 (2006).
K. Otani, K. Shigemori, T. Sakaiya, S. Fujioka, A. Sunahara, M. Nakai, H. Shiraga, H. Azechi, and K. Mima, “Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation,” Phys. Plasmas. 14, 122702-1122702-7 (2007).
A. Casner, D. Galmiche, G. Huser, J. -P. Jadaud, S. Liberatore, and M. Vandenboomgaerde, “Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA,” Phys. Plasmas. 16, 092701-1092701-16 (2009).
A. Casner, L. Masse, B. Delorme, D. Martinez, G. Huser, D. Galmiche, S. Liberatore, I. Igumenshchev, M. Olazabal-Loumé, Ph. Nicolaï, J. Breil, D. T. Michel, D. Froula, W. Seka, G. Riazuelo, S. Fujioka, A. Sunahara, M. Grech, C. Chicanne, M. Theobald, N. Borisenko, A. Orekhov, V. T. Tikhonchuk, B. Remington, V. N. Goncharov, and V. A. Smalyuk, “Process in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front,” Phys. Plasmas. 21, 122702-1122702-11 (2014).
D. T. Casey, V. A. Smalyuk, K. S. Raman, J. L. Peterson, L. Berzak Hopkins, D. A. Callahan, D. S. Clark, E. L. Dewald, T. R. Dittrich, S. W. Haan, D. E. Hinkel, D. Hoover, O. A. Hurricane, J. J. Kroll, O. L. Landen, A. S. Moore, A. Nikroo, H.-S. Park, B. A. Remington, H. F. Robey, J. R. Rygg, J. D. Salmonson, R. Tommasini, and K. Widmann, “Reduced instability growth with high-adiabat high-foot implosions at the National Ignition Facility,” Phys. Rev. E 90, 011102-1011102-5 (2014).
J. F. Wu, W. Y. Miao, L. F. Wang, Y. T. Yuan, Z. R. Cao, W. H. Ye, Z. F. Fan, B. Deng, W. D. Zheng, M. Wang, W. B. Pei, S. P. Zhu, S. E. Jiang, S. Y. Liu, Y. K. Ding, W. Y. Zhang, and X. T. He, “Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang II laser facility,” Phys. Plasmas. 21, 042707-1042707-6 (2014).
Carl J. Pawley and A. V. Deniz, “Improved measurements of noise and resolution of x-ray framing cameras at 1-2 keV,” Rev. Sci. Instrum. 71, 12861295 (2000).
C. Bonté, M. Harmand, F. Dorchies, S. Magnan, V. Pitre, J.-C. Kieffer, P. Audebert, and J.-P. Geindre, “High dynamic range streak camera for subpicosecond time-resolved x-ray spectroscopy,” Rev. Sci. Instrum. 78, 043503-1043503-8 (2007).
S. G. Glendinning, B. A. Remington, S. W. Haan, D. H. Munro, and S. V. Weber, “Analysis techniques for directly and indirectly driven hydrodynamic experiments on Nova,” Rev. Sci. Instrum. 63, 51085110 (1992).
V. A. Smalyuk, T. R. Boehly, D. K. Bradley, J. P. Knauer, and D. D. Meyerhofer, “Characterization of an x-ray radiographic system used for laser-driven planar targets experiments,” Rev. Sci. Instrum. 70, 647650 (1999).
V. A. Smalyuk, T. R. Boehly, L. S. Iwan, T. J. Kessler, J. P. Knauer, F. J. Marshall, D. D. Meyerhofer, C. Stoeckl, and B. Yaakobi, “Fourier-space image processing for spherical experiments on OMEGA (invited),” Rev. Sci. Instrum. 72, 635642 (2001).
M. R. Varma, K. Rajan, and P. P. Mondal, “Fast image reconstruction for fluorescence microscopy,” AIP Advances. 2, 032174-1032174-6 (2012).
C. Thomas, G. Rehm, I. Martin, and R. Bartolini, “X-ray pinhole camera resolution and emittance measurement,” Phys. Rev. ST Accel. Beams. 13, 022805-1022805-11 (2010).
Deblurring images using Lucy-Richardson algorithm. Mathworks Inc, 2007.
M. M. Marinak, S. G. Glendinning, R. J. Wallace, B. A. Remington, S. V. Weber, S. W. Haan, and G. W. Collins, “Nova indirect drive Rayleigh-Taylor experiments with beryllium,” Phys. Plasmas. 9, 35673572 (2002).

Data & Media loading...


Article metrics loading...



Typical face-on experiments for Rayleigh-Taylor instability study involve the time-resolved radiography of an accelerated foil with line-of-sight of the radiography along the direction of motion. The usual method which derives perturbation amplitudes from the face-on images reverses the actual image transmission procedure, so the obtained results will have a large error in the case of large optical depth. In order to improve the accuracy of data processing, a new data processing technique has been developed to process the face-on images. This technique based on convolution theorem, refined solutions of optical depth can be achieved by solving equations. Furthermore, we discuss both techniques for image processing, including the influence of modulation transfer function of imaging system and the backlighter spatial profile. Besides, we use the two methods to the process the experimental results in Shenguang-II laser facility and the comparison shows that the new method effectively improve the accuracy of data processing.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd